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Preface

In the summer of 1991 geometric group theorists gathered in Sussex for the
Geometric Group Theory Symposium. For the first two weeks of July they
met at the Workshop session in Sussex University, where they took part in
informal research seminars. There were 35 talks, including a course on the
theory of racks by Roger Fenn and a series of lectures on semi-hyperbolic
groups by Martin Bridson. This culminated in a London Mathematical So-
ciety Spitalfields Lecture day, with talks by Alan Beardon, Walter Neumann
and Hyman Bass.
During the third week the residential conference took place at the White
House Conference Centre in Chelwood Gate. There was a total of 40 talks,
including four lectures by Eliahu Rips on his classification of groups acting
freely on IR-trees and two lectures by Andrew Casson on convergence groups
and his proof of the Seifert conjecture.
We had asked the participants of the conference to survey their special field of
interest. About half of the papers in the first volume of these proceedings are
of this nature, and we hope this will provide a good overview of the state of
the art of geometric group theory at the time of the conference. In particular,
Michael Gromov's response to our request was so enthusiastic, that we decided
to dedicate the entire second volume to his essay Asymptotic Invariants of
Infinite Groups. The remainder of the articles are either extended versions of
papers given at the conference or answers to questions posed there.
The first volume is concluded by a list of problems suggested at the Geomet-
ric Group Theory Symposium. Most were written up in the coffee lounge
throughout the workshop and conference sessions, and were discussed at
length by the Falmer Pub Research Group. The editors would like to ex-
press their thanks to Steve Gersten, who chaired the Problem Session at the
conference with his customary good humour, and to Swarup, who faithfully
recorded the discussions.
In editing these proceedings we have tried to produce some uniformity while
respecting the authors' individuality. We of course accept full responsibility
for any inconsistencies or errors introduced by our interference.
It is a pleasure to thank all the people who helped us in preparing and running



the conference. Christine Coles assisted us enthusiastically from an early
stage, David Epstein encouraged and advised us, and Martin Dunwoody and
Swarup gave us valuable support during the conference. We would also like
to thank the principal speakers whose enthusiasm, and willingness to commit
themselves to the project at the beginning ensured its success.
The following provided generous financial support: Wolfram Research spon-
sored a demonstration of Mathematica; the London Mathematical Society
funded the Spitalfields Lectures; the Science and Engineering Research Coun-
cil, whose generous grant (Grant No. GR/G 35572) made the Symposium
possible.

Graham A. Niblo
Mathematics Department,
Southampton University,
Southampton,
SO9 5NH
England

Martin A. Roller
Mathematik,
Universitat Regensburg,
Postfach 397,
8400 Regensburg,

Germany
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Group Actions and Riemann Surfaces

Alan F. Beardon

Department of Mathematics and Mathematical Statistics, University of Cambridge,

16 Mill Lane, Cambridge, CB2 1SB.

1. Introduction

We begin by considering two familiar ways of constructing Riemann surfaces.
First, we take a power series P converging on some disc Do with centre zo, and
expand P about some point zl in Do other than zo. In general, P will converge.
in a disc Dl extending beyond Do, and if we continue this process indefinitely
we obtain a maximal Riemann surface on which the analytic continuation of
P is defined. Of course, if we return to a region where P is already defined,
but with different values, we create a new `sheet' of the surface; thus we are
led to the notion of a Riemann surface constructed from a given power series:
this is the Weierstrass approach. A more modern approach is simply to define
a Riemann surface as a complex analytic manifold but either way, there is the
problem of showing that these two definitions are equivalent. It is easy enough
to see that a Riemann surface obtained by analytic continuation is an analytic
manifold, so we must focus our efforts on showing that every analytic manifold
supports an analytic function. One solution to this problem lies in showing
first that every such manifold arises as the quotient by a group action, and
second, that we can construct functions invariant under this group action.
As a by-product of a study of these groups we obtain important and very
detailed quantitative information about the geometric nature of the general
Riemann surface.
In pursuing this line of thought we are led naturally into the study of dis-
crete group actions on the three classical geometries of constant curvature
(the sphere, the Euclidean plane and hyperbolic plane), and also to the way
that discreteness imposes severe geometric constraints on the corresponding
quotient surfaces. The crystallographic restriction on Euclidean groups is one
example of this, but, as we shall see, this idea reaches out well beyond the
study of wall-paper patterns and goes on to exert a powerful influence on
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the geometric structure of all Riemann surfaces. It is this influence that we
attempt to describe in this essay.

2. The Uniformisation Theorem
The Uniformisation Theorem implies that every Riemann surface can be re-
alised as the quotient by a group action and, once we have given an explicit
description of the possible groups that arise in this way, this lays bare the
geometric nature of Riemann surfaces for all to see. In this section we dis-
cuss the group actions that arise and later we shall show how, by examining
these, we can obtain universal information about the metric and the geometric
structure of the general Riemann surface.
Consider now an arbitrary Riemann surface R. It is a straightforward matter
to construct the topological universal covering surface S and to lift the con-
formal structure from R to S, thus realising R as the quotient of the simply
connected Riemann surface S by the corresponding cover group G. We know
(from topology) that G has certain interesting properties (for example, only
the identity in G can have fixed points on S, and G is the fundamental group
of R) but, so far, we have little concrete information about S or G.
The key step now is to invoke the strong form of the Riemann Mapping
Theorem, namely that every simply connected Riemann surface is conformally
equivalent to one of the three spaces
(a) the extended complex plane (or the Riemann sphere) S,
(b) the complex plane C,
(c) the hyperbolic plane H (that is, the unit disc {z : jzj < 1} in C).

With this available, we can pass (by a conformal mapping) from the universal
cover S to one of these spaces and henceforth take one of S, C or H as the
universal cover of R. We can immediately draw some interesting conclusions
from this representation; for example, it shows that every Riemann surface
has a countable base, and also an exhaustion by compact sets. (We remind the
reader that there are surfaces which do not have these desirable properties.)
The benefits of using only S, C or H as universal covering spaces are enor-
mous and these arise from the (easily proved) analytic fact that the group of
conformal automorphisms of each of these spaces is a subgroup of the Mobius
group M consisting of all maps of the form

g(z) =
az +bad

- be = 1. (1)cz+d'
In fact, M is the full group of conformal automorphisms of S, the conformal
automorphisms of C are the maps g(z) = az + b, and conformal automor-
phisms of H are

g(z) =
az + c' 1al2 - Icl2 = 1. (2)
cz+a
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We have now reduced the study of the general Riemann surface (defined as a
manifold) to the study of quotients by discrete subgroups of M. Of course,
each of the three spaces S, C or H are metric spaces, the hyperbolic metric
on H being derived from the line element

ds
21dzl

1 - JzJ2

and we shall be particularly interested in the Mobius isometries of these
spaces. In the case of H, all automorphisms of the form (2) are hyperbolic
isometries and these are the only conformal isometries of (1111, p). For more
information, see [2], [4], [5], [7], [11] and [12].
Each Riemann surface R determines its universal cover uniquely from among
the three possibilities 5, C or H because these three spaces are conformally
inequivalent. There are very few surfaces R which have S or C as their
universal cover and we can easily dispose of these. If R has S as its universal
cover, the cover group G is trivial (for only the identity in G can have fixed
points on S) and so (up to conformal equivalence) R = S. This shows that
there is only one conformal structure on the sphere.
The case when R has C as its universal cover is hardly more interesting. As
the automorphism group of C is the class of maps z H az + b, the requirement
that only the identity in G can have fixed points on C means that G must
be a group of translations (that is, a = 1). As G is also discrete, we see
that either G is the trivial group (and R = C), or G is generated by one or
two (linearly independent) translations. If G is a cyclic group then (up to
conjugacy) G is generated by z i-* z + 27ri, the quotient map is z H exp z (for
exp z = exp w if and only if w = g(z) for some g in G), and in this case R is
the punctured plane C - {0}. It is of interest to note that the surfaces S, C
and C - {0} which we have obtained so far are, collectively, the sphere with
at most two punctures. In the remaining case, R has C as its universal cover,
G is generated by two independent translations and R is a torus. Before
moving on, we note that although any two tori are topologically equivalent,
there are infinitely many distinct conformal equivalence classes of tori so, as
far as the analyst is concerned, the discussion of this can go much further.
Our discussion so far has led to the conclusion that essentially every Riemann
surface has the hyperbolic plane H as its universal cover and, as the local
geometry of H projects down to R, we see that the intrinsic geometry of the
generic Riemann surface is hyperbolic; for example, if T is a small triangle on
a generic Riemann surface then its angle sum is strictly less than 7r. This, of
course, applies equally well to planar Riemann surfaces, so that when we study
plane domains with the induced Euclidean structure in elementary complex
analysis we are, in fact, using the wrong geometry. As a simple indication
that we should have anticipated this, we observe that in any reasonable metric
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tied to a domain D, the boundary of D should be infinitely far from any
point inside it: this is true in the intrinsic hyperbolic geometry of D but
not, of course, generally true in the Euclidean metric. To be more precise,
in any plane domain the hyperbolic metric is a Riemannian metric given by
ds = .(z)ldzl where \(z) -* oo as z --+ 8D. For `most' domains, and for
all simply connected domains, .\(z) is of the same order as the reciprocal of
the Euclidean distance of z from 8D. There are, however, domains in which
X(z) -+ oo at a slower rate than this as z approaches particular boundary
points of D.
The realisation that the intrinsic geometry in complex analysis is hyperbolic
has profound repercussions and we illustrate this here with one fundamental,
but simple, result. One of the results in a standard complex analysis course
is Schwarz's Lemma: if f is an analytic map of the unit disc into itself, and
if f(0) = 0, then If (z) < IzI with equality if and only if f is a rotation. Now
the hypotheses asserts that f is a self-map of the hyperbolic plane into itself,
and the conclusion is stated (rather perversely) in terms of the Euclidean
distance IzI between z and 0. However, if p is the hyperbolic distance in 1H[
the conclusion can also be stated as

p(f (z), f (0)) : p(z, 0)

and, with a little (but not much) extra work, we obtain the far more pene-
trating form known as the Schwarz-Pick Lemma: if f is an analytic map of
the hyperbolic plane into itself, then f is either a contraction or an isometry,
[1]. Many results in complex analysis depend as much on this fact as they do
on analyticity.
It is now evident that we must examine discrete groups of hyperbolic isome-
tries, and we recall that any conformal isometry of ]H[ is of the form

g(z) =
az + c,

lal2 - Icl2 = 1.cz+a
A discrete group is necessarily countable, and the condition for discreteness
is equivalent to the statement that Jal -+ oo or, equivalently, to Icl -+ oo as
g runs through G. As jal2 - Icl2 = 1, this is equivalent to ja/cl -+ 1 and,
as Ic/al = Ig(0)I, we see that discreteness is equivalent to saying that all G-
orbits accumulate only on the ideal boundary of H (that is, on the unit circle
IzI = 1). We shall return to discuss the isometries in greater detail later.
We end this section with the remark that the Uniformisation Theorem is a
deep result (as must be evident from the results that flow from it), and the
most difficult part of the proof is the existence part, namely the Riemann
Mapping Theorem. The usual proof of this involves potential theory (where
the existence of the Green's function is the main issue) and we refer the reader
to, for example, [1] and [3] for the details. It is, perhaps, worth mentioning
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that the existence or otherwise of a Green's function is a problem in real
analysis.

3. Automorphic functions

If G is a group acting on a space X, then the class of maps F : X/G -+ Y
corresponds precisely to the class of G-periodic maps f : X -* Y, that is, to
maps f with the property that f (gx) = f (x) for every x in X and every g in
G. As an example, each analytic map f : C -+ C with period 27r corresponds
to an analytic map F : C - {0} -+ C which has a Laurent expansion

+00
F(C) = E anrn

n=-oo

valid throughout C- {0}. Here, the cover group G is generated by z '-+ z+27r,
the quotient map is z i-+ etz and so the periodic map f has a Fourier expansion

+00

f(x + iy) = F(etz) = anenx-ny

n=-oo

valid throughout C (this reduces to the usual Fourier series when y = 0).
For more details, see [8], [9] and [10]. As an illustration of this, z h-) cos z
corresponds to F(C) = (S + (-')/2. As F is a rational map of degree 2, this
explains why cos is a 2-1 mapping of each fundamental strip (of width 21r)
onto the sphere S.
One of the consequences of the Uniformisation Theorem is that given any Rie-
mann surface R (as a manifold), we can construct analytic functions defined
on it simply by constructing analytic G-periodic functions on the appropriate
covering space, and hence we can establish to equivalence of the two concepts
discussed in Section 1. Of course, any function of the form E9EG A 9(Z))
is periodic providing that the sum is absolutely convergent (or G is finite);
however, in general the sum will diverge and some modifications are required
to force convergence.
In the case of the Weierstrass elliptic function a, for example, (where R is a
torus) the group G is generated by two independent translations z i-i z + 1
and z H z + it and one defines

1 1: 1 1

z2
m,nEZ ((ml+n_z)2(ml+np)2)

(m,n)#(0,0)

Without the term independent of z, the series would diverge and the sub-
traction of this term is designed to make the difference small enough to force
absolute convergence (as indeed it does).
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Our interest centres on the generic Riemann surface with the hyperbolic plane
H as its covering space, so our task is really to take any discrete group G of
hyperbolic isometries acting on H, and to learn how to construct periodic
functions or, as they are more commonly known in the subject, automorphic
functions. The key step is to note that, ignoring questions of convergence for
the moment, if

0(z) = f(g(z))9 (z)t,
gEG

then, for h in G,

0(h(z))h'(z)t = E f(gh(z))9 (hz)th'(z)t = E f('Y(z))-y (z)' = 0(z),
9EG ryEG

(3)

and so the quotient of any two such 0-functions (constructed using two dif-
ferent choices of f) will be automorphic. In fact, any function 0 here gives
rise to a differential on the Riemann surface: for more details, see [5], [8], [9]
and [10].
We must now pay attention to the convergence. First, we impose reasonable
properties on the function f in (3) (which, in this exposition, we ignore), and
then attempt to obtain absolute convergence by studying the series

E g ,(Z),. (4)
9EG

Now the general isometry is given by g in (2) and

y'(z) = 1 _ 1

(cz + a)2 c2(z - g-1(00))2

The point g-l(oo) lies outside the unit circle so, if z lies in some compact
subset K of H, we obtain uniform convergence of (4) on K providing that the
series ICI-2t converges.

The convergence of the series E ICI-21 for sufficiently large values of t is easily
established. For example, as lg'(z)12 represents the distortion in the Euclidean
area of the mapping g, we can take a small disc D in H in a fundamental
domain for G and then the Euclidean area of g(D) is approximately Ig'(z)12A,
where A is the Euclidean area of D. As the sets g(D), g E G, are disjoint
sets contained in H (of finite Euclidean area ir), the series E JcJ-4 converges.
This argument can be made precise without difficulty, but it is natural to
object to it on the grounds that it invokes Euclidean arguments. It can be
modified to use hyperbolic arguments (although one should note that H has
infinite hyperbolic area) and in this way one can show that F, JcJ-2t converges
for all t > 1. In fact, this is the best one can do, for there are groups
for which the series diverges when t = 1 (the groups whose fundamental
region has finite area, and which correspond to compact Riemann surfaces
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with finitely many punctures). For a given group G, one can examine the
exponent of convergence of the series for that group (essentially, the smallest
t for which the series (4) converges); for most groups this is the Hausdorff
dimension of the limit set (the accumulation points of the orbits of G) and
it is an important measure of the (common) rate at which the G-orbits move
out to the ideal boundary of H.

4. The geometry of Riemann surfaces

Before we turn our attention to cover groups of hyperbolic Riemann surfaces,
let us briefly consider the ideas involved by examining the effect of discrete-
ness on Euclidean groups. Suppose that IF is a discrete group of Euclidean
isometries acting on the Euclidean plane, and that IF contains translations.
By discreteness, the translations in IF have a minimal translation length which
we may assume is 1 and attained by the translation t in r.
Let g in r be a rotation of angle 21r/n about the point z9, so that the conjugate
element h = tgt-1 is a rotation of the same angle about t(z9). Now draw a
line L2 through z9 and t(z9), a line L1 through z9 making an angle ir/n with
L2, and a line L3 parallel to L1 through t(z9). Let aj denote reflection in L.
Then g (or g-1) is ala2, h-1 (or h) is a2a3, and gh (or a similiar word) is the
translation alai through a distance 21z9 - t(z9)l sin(7r/n). As this is at least
1, and as Iz9 - t(zg)I = 1, we conclude that n < 6.
This is the familiar crystallographic restriction, but the essential point here
is to realise that these techniques are available in other geometries although
the conclusions are different. The conclusions are different, of course, because
each geometry comes equipped with its own trigonometry and the quantita-
tive results of this type must, of necessity, reflect that particular trigonometry.
To see the effect that the different trigonometries have on the three geome-
tries, observe that Pythagoras' Theorem for a right angled triangle with sides
a and b and hypothenuse c is a2 + b2 = c2 in the Euclidean plane, whereas in
the hyperbolic plane it is

cosh a cosh b = cosh c,

and in the spherical case,

cos a cos b = cos c.

It is only in the spherical case that we can have a = b = c. Note also
that in the hyperbolic plane, for very large triangles we have (essentially)
a + b = c + log 2, that is, the vertices appear to be almost collinear (this is the
effect of negative curvature). Again, in the hyperbolic plane there are regular
n-gons with all angles 7r/2 precisely when n > 5; the case n = 4 is Euclidean
and n = 3 is spherical.
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In the hyperbolic plane the circumference of a circle grows exponentially
with the radius, and roughly at the same rate as the area, so that we may
regard the hyperbolic plane as having, by comparison with the Euclidean
plane, an immense amount of room near its ideal boundary (the circle at
infinity): formally, this is the effect of negative curvature and separating
geodesics and it is this that accounts for the inexhaustible supply of discrete
hyperbolic groups compared with the 17 wallpaper groups in the Euclidean
case. Roughly speaking, we can construct an increasing sequence of discrete
hyperbolic groups in which in each case there is always ample room in the
space near infinity to incorporate some extra group action into the picture.
In order to understand the mechanism by which discreteness imposes geo-
metric constraints on hyperbolic Riemann surfaces, we need to know that an
individual hyperbolic isometry g can be expressed as the composition g = a/3
of two reflections a and /3 across hyperbolic geodesics La and 2p, respectively
(called the axes of a and /3). We omit the proof of this, but remark that it
is merely the hyperbolic counterpart of the familiar Euclidean fact that the
composition of two reflections is either a rotation (if the axes of the reflection
meet) or a translation (if the axes are parallel). It is a consequence of the
failure of the Parallel Axiom in hyperbolic geometry that there are three pos-
sibilities in the hyperbolic plane, for there two geodesics either cross or not
and, if not, they may or may not meet on the circle at infinity.
If La and 2p have a common orthogonal geodesic L9; then g leaves L9 invariant.
In fact, one end-point of L9 is an attracting fixed point, the other end-point
is a repelling fixed point, and g moves each point of L. by the same distance
(twice the hyperbolic distance between Qa and Pp) along L9. We call L9 the
axis of g, the distance g moves each point along L9 is the translation length T9
of g, and g is said to be a hyperbolic translation (or, sometimes, a loxodromic
isometry or even, rather confusingly, a hyperbolic element of the isometry
group). In any event, if g lies in some cover group, the lines 2a and to cannot
cross (else g would fix the point of intersection) and the only other case is
that the two lines meet on the circle at infinity; in this case, g is said to
be parabolic and it is conjugate to a Euclidean translation. In the case of a
hyperbolic translation g, there is a useful formula for the distance a point z
is moved by g, namely

sinh Zp(z, gz) = sinh(ZT9) cosh p(z, L9) ;

thus the minimum movement occurs on the axis L9 of g, and the further z is
away from the axis, the more it is moved by g.
Now consider two hyperbolic translations g and h such that the axes L. and Lh
have a common orthogonal geodesic Lp (and are therefore necessarily disjoint).
It is easy to see that these can be expressed in the form g = a/3 and h = fl-Y,
where a, /3 and y are reflections with axes La, 2p and .try, respectively, and, as
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a consequence of this, we have gh = cry; in other words, the composition for
gh is expressed neatly in terms of the compositions for g and h. Sadly, this
argument is restricted to two dimensions for in higher dimensions g and h
may each be a composition of more that two reflections and then cancellation
(of Q, for example) may not occur.
We now examine some of the consequences of this expression for gh. If L9
and Lh come close to each other compared with T9 and Th, and if the lines
to and Lry are on the same side of fp (which may be achieved by replacing g
by g-1 if necessary), then the lines to and try will meet and gh will have a
fixed point in H. The reader is urged to draw a diagram to illustrate this but,
roughly speaking, the lines L9 and Lh curve (in Euclidean terms) away from
each other, and this forces the lines to and try to cross providing that T9 and
Th are not too large. If g and h are in some cover group then gh cannot have
fixed points in H and so, in any cover group, the geometric quantities T9, Th
and p(L9, Lh) (that is, the hyperbolic distance between the axes of g and h)
cannot all be small. As the axes of g and h project to closed geodesic loops
on the Riemann surface R, this result tells us that two short disjoint geodesic
loops on R must be fairly far apart or, equivalently, if they are close to each
other then one is fairly long. The same argument applies when g and h are
in the same conjugacy class in G, and this implies that if the distance from
a geodesic loop to itself along a non-trivial closed curve on R is small, then
the loop must be long. There are many results of this type available, and
they all have a precise, quantitative, formulation which can be derived from
elementary hyperbolic trigonometry; for example, the result above is that, in
all cases,

2 sinh(2T9) sinh(2Th) sinh2 2p(Lg, Lh) > 1. (5)

Roughly speaking, these results describe the universal metric properties of
handles on a hyperbolic Riemann surface.
There is an analogous inequality to (5), valid when the two axes cross at an
angle 0, and this is

sinh(2T9) sinh(ZTh) I sin 0I > 1. (6)

Suppose now that v is a self-intersecting loop on a Riemann surface R of
length Jul. Then, in terms of the cover group G, this means that there is
a hyperbolic translation g and a conjugate element hgh-1 such that both
have translation length Jo , and such that their axes cross at some angle 0.
Applying (6), and using the fact that 1 > I sin 01, we see that sinh(flo l) > 1;
thus there is a lower bound on the length of a non-simple loop on a hyperbolic
Riemann surface, and this is a universal lower bound in the sense that it does
not depend on the particular surface.
A related result, quite beautiful in its simplicity, is that if G is a group of
hyperbolic isometries without hyperbolic rotations, then, for all z in H,

sinh Zp(z, gz) sinh Zp(z, hz) > 1 (7)
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unless g and h lie in some cyclic subgroup of G (see [2]). In this result, G
is not assumed to be discrete, and it is a consequence of this that any group
of hyperbolic motions without rotations is automatically discrete, and hence
automatically a cover group of some surface. Equally, if G is a cover group,
this result is still applicable and it implies (but in a rather stronger form) that
the lengths of any two loops from any point in the surface R can only both
be small when they lie in a cyclic subgroup of the homotopy group. Again,
this is a quantitative universal result which holds for all hyperbolic Riemann
surfaces. Of course, (7) need not hold if (g, h) is cyclic; for example, one can
construct a small translation g and then put h = g2.
Results of this type are not restricted to hyperbolic translations, and there are
similiar conclusions to be drawn for all elements in a cover group G. Briefly,
a puncture p on the surface R corresponds to the unique fixed point C of a
parabolic element g of G and, conversely, any parabolic element determines
a puncture on R (we recall that a parabolic element is conjugate to the
Euclidean translation z H z + 1 acting on the upper half-plane model of H).
It can be shown that each such parabolic fixed point C is the point of tangency
of a horocycle cal H9 in H (cal H9 is a Euclidean disc in H tangent to {z :
IzJ = 1} at () and, moreover, the horocycles cal H9 can be chosen to be
disjoint for distinct C and to be compatible with conjugation in the sense that
h(cal H9) = cal Hh9h-I . In fact, the elements of G leaving cal H9 invariant
form a cyclic subgroup Go of G and the quotient space cal H9/Go is a once
punctured disc which is conformally equivalent to a neighbourhood of the
corresponding puncture p on R. This is the formal statement of the fact
that the neighbourhood of any puncture on any hyperbolic Riemann surface
is the same as the quotient of {x + iy : y > 0} by the exponential map.
As far as geometric constraints are concerned, one can show that the cal H.
can be chosen so that the (finite) area of cal H9/Go is at least 1 (a universal
lower bound), and that in an appropriate and universal sense the simple
geodesic loops on the surface R do not come too close to the puncture p.
The geometry near a puncture p is such that one travels an infinite distance
to reach p, but through a neighbourhood of p of finite area; thus, roughly
speaking, the surface R has an infinitely tall, infinitely thin, spike at p.
It is natural to now allow our groups to contain hyperbolic rotations and so
study the most general discrete group G acting on the hyperbolic plane: this
amounts to considering branched coverings of Riemann surfaces. In fact, if G
is finitely generated, then it contains a torsion-free normal subgroup of finite
index (this is Selberg's Lemma) and so we may expect that suitably, but only
slightly, relaxed versions of the earlier constraints will hold. This is so but,
of course, there are also entirely new types of constraints to be considered,
namely those involving rotations.

Briefly, we describe some of the many geometric constraints that hold for these
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groups. Suppose, for simplicity, that G is finitely generated. Then G has a
fundamental region F consisting of a finite number of sides (and also many
other desirable features) and we mention, in passing, that a presentation of G
can be read off from the geometry of F; in particular, the relations in G are
consequences of the relations associated with small loops around each vertex
of F. If F has finite area A (so that the corresponding Riemann surface
R is compact apart from a finite number of punctures), we can compute A
from the topological and geometric data using the Gauss-Bonnet Theorem.
The formula for A involves the genus ry of R, the number k of punctures of
R, and the orders m3 of the finite number of (conjugacy classes) of rotation
subgroups of G, and is

A/21r=2y-2+k+t 11- 1).
;_i \\ mIt

is not hard to see that the function (of integer variables) on the right hand
side attains its positive minimum value (for the so-called (2,3,7)-Triangle
group) and that this minimum is 1/42. Although this shows that every Rie-
mann surface has area of at least 7r/21, there are no rotations in a cover group
and so one one can do better; the finite sum in the formula for A is absent,
the area is at least 27r and again this is a universal inequality.
Suppose now that g and h are rotations in G of orders p and q, respectively,
with fixed points z9 and zh (where p > 3 and q > 3, although one, but not
both, of p and q can be 2). Clearly, any fundamental region can be assumed
to lie in a cone-shaped region with vertex z9 and angle 21r/p (a fundamental
region for (g)), and likewise for h. The intersection of these two cones will
contain a fundamental region for G and so have area at least it/21; thus it is
evident that, given p and q, the hyperbolic distance p(z9i zh) cannot be too
small. There is a class of groups known as the Triangle groups (these are the
groups whose quotient has small area, and for which the orbits are the most
closely packed in H) for which the argument is a little fussy and the results
not quite as strong, but, excluding these, a careful geometric argument based
on this idea and a calculation of the area involved leads to the sharp result

cosh p(z97 zh) >
1 + cos(7r/p) cos(ir/q)

sin(ir/p) sin(a/p)

Briefly, the distance between a fixed point of order p and a fixed point of
order q (possibly p = q here) is bounded below by a universal function of p
and q.
As the previous inequality suggests, it is true that there is no positive lower
bound on the distance between two fixed points of order two. However, there
is a lower bound on the triangle bounded by three non-collinear fixed points of
order two. Indeed, the composition of two rotations of order two produces a
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hyperbolic translation whose translation length is twice the distance between
the fixed points; hence if three fixed points are close and non-collinear, we
have two translations with crossing axes and small translation length and
this violates discreteness. This constraint can also be expressed in a sharp
quantitative form.

5. Actions of discrete Mobius groups

We turn now to a discussion of what can be said about the most general
discrete subgroup G of the Mobius group. First, we must distinguish carefully
between the discreteness of G (as a topological group) and its discontinuous
action (G acts discontinuously in a domain D if, for each compact subset K
of D, g(K) fl K # 0 for only a finite set of g in G). It is easy to see that
if G acts discontinuously in some D then G is discrete, but, as the following
example shows, the converse is false.

The Picard group r is the group of Mobius maps g of the form (1) where
the coefficients a, b, c and d are Gaussian integers. Clearly, I' is discrete.
However, for each Gaussian integer C and each (real) integer N, the map

(1 - N()z + C2h(z) -
-N2z + (1 + N()

is in I' and fixes (/N. As the set of points (/N is dense in c, r does not act
discontinuously in any open subset of G.

In the light of this example, we need another way of looking at discrete
subgroups of M and this is possible if we pass to three dimensional hyperbolic
space in the following way. We embed the complex plane C naturally in R3
as the plane x3 = 0 and view each circle in C as the equator of a sphere
in 1R3, and each line in C as the intersection of a vertical plane with C.
Obviously, each reflection a in a line, or circle, in C extends to the reflection
in the corresponding spheres or plane and we do not distinguish between the
original a and its extension. Now each Mobius map can be expressed as the
composition of at most four reflections (in circles or straight lines in C) and
so, in the obvious way, each Mobius map g extends to an action on R3 and
C is invariant under this action. We call this the Poincare extension of g.
The important feature of the extension described above is that the upper-half
of 1R3 with the Riemannian metric ds = jdxj/x3 is a model of hyperbolic 3-
space 1H13 and each Mobius map g now acts as an isometry of this space. From
a more sophisticated point of view, we now recognise that the true domain
of the Mobius maps (1) is H3 (where they act as isometries) and not the ex-
tended complex plane (the boundary of H3) where they are always introduced.
The relationship between discreteness and discontinuity now reappears, for a
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general subgroup of M is discrete (as a topological group) if and only if it
acts discontinuously in 1H13 (this is the higher dimensional version of the result
that a subgroup of SL(2, I8) is discrete if and only if it acts discontinuously
on the upper half of the complex plane). In fact, this result can be put into
a sharp quantitative form: if g is given by (1), we write

IIgII2 =
IaI2

+ Ibl2 + IcI2 + IdI2,

so that IIgII is the usual matrix norm, and then we have

IIgII2 = 2cosh p(i,g(j)),

where j = (0, 0, 1). This relation shows that as g runs through G, IIgII -'
oo (that is, G is discrete) if and only if p(j,g(j)) -+ oo (that is, G acts
discontinuously in upper half-space). In addition, it also shows that g fixes
the point j if and only if IIgII2 = 2, equivalently, if and only if the matrix for
g is in SU(2, C). Of course, as the Mobius group acts transitively on ffi[3, the
stabiliser of any point is conjugate to this.
We can even describe the action of Mobius maps on IIl[3 algebraically. We
view the upper-half 1H13 of ]R3 as the set of quaternions C = x + iy + jt + Ok
and then let the map g given by (1) act on El' by the rule

C H (a( + d)-1,
(8)

the computations being carried out in the space Q of quaternions. Of course,
great care must be taken in calculations as multiplication of quaternions is
not commutative, but this does indeed give the correct action of g. Using the
quaternion representation, we see that if g(j) = j then

j = g(j) _ (aj + b)(cj + d)-1 =
(bd + ac) + j

IcI2+IdI2

or, equivalently,
bd+ac=0, Ic12+IdI2=1.

If we now appeal to the identity

l bd + acl2 + 1 = Ibd + acl2 + lad - bcl2 = (Ial2 + Ibl2)(IcI2 + IdI2),

this gives IIgII2 = 2. It is of interest to note that ]R3 is embedded in Q as
the set of quaternions with zero k-component and the action of g given by
(8) actually preserves this property. It is not at all obvious why this happens
but the explanation becomes clearer when we pass to higher dimensions.
The processes we have just described extend without difficulty to all dimen-
sions, and each M6bius map acting in R' (as a composition of reflections in
(n - 1)-planes and spheres) extends to an isometry of 1H[n+1. If C denotes
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the Clifford algebra generated by 1, i1, ... , in with i = -1 and i3ik = -ikii
when j 54 k, then the maps

9(C) = (a( + b)-(c( + d)-1, (9)

with suitable, but mild, restrictions on the coefficients, act on, and preserve,
the linear subspace V of Cn spanned by the generators 1,i1i...,in. The
elements of V are linear combinations of 1 , i1, ... , in and we call such points
the vectors of Cn. The elements of Cn that are products of non-zero vectors
form a group (the Clifford group) and the restrictions on the coefficients in
(9) are that they are in the Clifford group and that they satisfy a type of
determinental condition (which corresponds to ad - be = 1 in the complex
case). The computations here are not always as productive as one might
hope, largely, perhaps, because the algebra is less helpful; for example,

(i1 + 222324)2 = 0

so that Cn contains divisors of zero. It is of interest to note that the field of
complex numbers is C1 and it is only in this (low dimensional) case that the
entire Clifford algebra coincides with its subspace of vectors: in this sense,
the familiar complex Mobius maps are a special case indeed.
Let us illustrate these ideas in the context of R. In this case we are working
in C2, which is generated by 1, i1(= i), and i2(= j), and the map (9) preserves
the space V of vectors x + yi1 + tie + Oi1i2i where, of course, ili2 = ij = k.
As might be expected, the familiar representation of rotations of Euclidean
3-space by quaternion maps is a part of this much larger picture. To be more
explicit, the rotations of the ball in R3 are (after stereographic projection)
represented by the Mobius maps

9(z) =
az + b Ia12 = Jb12 -1,

bz+d

and the matrix for g is one form for a quarternion of unit norm.
Returning now to the geometry, the action of the Mobius group on upper
half-space Hn can be transferred (by a conjugacy in the full Mobius group
acting in Rn) to the unit ball B' and in this way we recapture the ball
model of hyperbolic n-space complete with the appropriate Mobius maps
as its isometry group. The Brouwer Fixed Point Theorem (for example)
guarantees that our isometries have fixed points in the closure of Bn and a
more careful examination shows that each isometry either has one or two fixed
points on OBn, or it has an axis of fixed points in Bn. We call elements of the
latter type elliptic elements: for example, the Euclidean rotation z H iz in C
extends to H as a rotation of order 4 which fixes each point of the positive
x3 axis.
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Let us now return to the original discussion of a general discrete group G of
Mobius maps of the form (1) acting on the extended complex plane and deal
first with two special cases. One can show that if such a group G contains
only elliptic elements, then the elements of G have a common fixed point in
1H[3. This means that, up to conjugation, and using the unit ball model, G is
a discrete subgroup of the compact group of rotations of 1R3 and so is finite.
With a little more work, one can go on to show that G must be the symmetry
group of one of the five regular Platonic solids.
For the second special case, suppose that G is a discrete subgroup of au-
tomorphisms of C (that is, of maps of the form z H az + b). Then every
element of G fixes oo and the crucial (but elementary) point to observe now
is that if both a translation and a dilatation in G fix oo, then G cannot be
discrete. As a consequence, G cannot contain both translations and dilata-
tions, and this is the key step in analysing the possibilities for G in this case.
With this, we can show that G is either a finite cyclic rotation group, or a
finite extension of a cyclic group generated by a dilatation, or a frieze group
(when the translations in G are in the same direction) or, finally, one of the
seventeen `wallpaper groups'. To discuss the most general discrete group of
(complex) M6bius maps, we can pass into H3 and study its action there. The
group acts as a discontinuous group of isometries, and we can construct a
fundamental region (a hyperbolic polyhedron) for the action of G and study
the geometry of this. Most of the ideas used in the two-dimensional study
are available and many (but not all) of the results remain true in this and
the higher dimensional situations. There is, however, the problem mentioned
above. The geometry of the hyperbolic plane, and the decomposition of the
isometries into a product of two reflections is infinitely simpler than in higher
dimensions. In ]H[, for example, the general isometry (that is, the general
Mobius map) can be written as a composition of at most four reflections
across hyperbolic planes and, in general, we need all four reflections. This
fact alone implies that there is no longer a convenient way to represent the
composition of two isometries as was the case in 1H12, and we must now turn
to algebraic methods to proceed.
It is helpful, therefore, to now regard Mobius maps as elements of the matrix
group SL(2, C) and to consider conditions which must be satisfied by the
matrix elements of f and g in order that (f, g) is discrete. The first significant
result of this kind appeared in the 1930's or so and is simply this: if

f=
1 a b

(0
11

g-
c d)

(10)

and if (f, g) is discrete then

c = 0 or Icl > 1. (11)
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When applied to isometries of 11112, this is simply the statement that the invari-
ant horocycle based at a parabolic fixpoint has area at least 1, and it can be
given a similiar interpretation in the geometry of 11][3. In higher dimensions,
however, the nature of parabolic elements changes (and one obtains screw
motions, for example) and the result generalises to only a limited extent.
To prove (11), one uses the technique which apparently goes back to Jordan,
namely, starting with two given elements f and g one constructs iteratively a
sequence h. of commutators (or sometimes conjugates). If one of the original
elements is near enough to the identity the sequence h converges to the
identity and so, if the group is discrete, hn = I for all sufficiently large n.
One must then convert h,, = I into specific information about f and g and,
excluding these case, we find that for discreteness, neither f nor g can be too
close to I. This technique was exploited by Jorgensen around 1972, who used
it to show that if the elements f and g in SL(2, C) generate a non-elementary
discrete group (roughly, elementary means a common fixed point here), then

Itrace2(f) - 41 + Itrace(fgf-1g-1)I > 1. (12)

This is now known as Jorgensen's inequality and taking f and g as in (10),
we recapture (11).
In 1979 Brooks and Matelski noticed that the iterative process used in the
proofs of (11) and (12) is quadratic, and hence is exactly of the type studied
in the Julia-Fatou theory of iteration of complex quadratic maps (now usually
written as z H z2+c and more popularly associated with the striking pictures
of the Mandelbrot and Julia sets), and indeed, they produced, in this context,
the first (albeit crude) picture of the Mandelbrot set. More recently, Gehring
and Martin have refined and extended these ideas and have produced many
more results of this type. With care, some of these ideas also extend to higher
dimensions and other spaces.

6. Analytic functions again
We end this essay by returning to our point of entry, namely analytic funtions,
to discuss briefly the impact our discussions have on complex analysis. We
have already mentioned the Schwarz Lemma (arguably the most important
result in geometric function theory), but the implications go far beyond this.
Roughly speaking, geometric information on a group action, or a Riemann
surface, can usually be converted into statements about analytic functions
and the vehicle by which the information is transmitted is the associated hy-
perbolic (Riemannian) metric. As a single example of this, we quote Landau's
Theorem (see [6]): there is a positive number k such that if

00

f(z) = E anz"
n-0
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is analytic in the unit disc ffl and omits the values 0, 1 and (of course) oo,
then

lall < 2Iaol(I log laoll + k).

This inequality, which controls the distortion due to f, is satisfied by all such
functions (that is, k does not depend on f), and it is illuminating to examine
in detail the role of k and the triple {0, 1, oo} in this.
First, we have seen that the sphere with one or two points removed has the
complex plane as its universal cover. The only other case that arose with C
as universal cover is the torus, thus a plane domain has 1E! as its universal
cover if and only if it its complement on the sphere contains at least three
points. The actual value of these three points is irrelevant (for any triple can
be mapped onto any other triple by a M6bius map); thus the significance of
the triple of excluded values in Landau's Theorem is simply that f maps IHI
into some hyperbolic domain. The significance of k is much more subtle ; in
fact, if the hyperbolic metric on the complement f of {0, 1, oo} is 1(z)ldzl,
then k = 1(-1), a hyperbolic quantity. The moral of all this is clear, namely
that complex analysis is intimately and inextricably linked with hyperbolic
geometry. Such penetrating insights are often hard to establish and usually
can only be seen retrospectively, but the effort involved is well worthwhile.

Finally, we mention Picard's Theorem, the proof of which is a supreme ex-
ample of the strength of the methods outlined in this essay and is almost
unbelievably short. Picard's Theorem states that if f is analytic on C and
omits two values there, then f is constant. Let ft be the complex sphere with
the points 0, 1 and oo removed. The universal cover of Sl is the unit disc H
and so (using the properties of the covering map) f lifts to a map F of C
into H. By Liouville's Theorem F is constant, thus so is f and the proof is
complete.

7. The epilogue

This essay is an attempt to show the development of the geometry of Mobius
group actions and Riemann surfaces towards its current state which, as many
different aspects of mathematics seem to be merging together, now appears
to be of interest to a much wider audience. It does not contain a catalogue
of the latest results, nor does it attempt to cover all points of view within
the subject, but hopefully, it does provide, in a fairly leisurely way, some
geometric insight into Mobius group actions. For general reading, we refer
the interested reader to any of the texts listed below.
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The virtual cohomological dimension of Coxeter groups

Mladen Bestvina

Mathematics Department, UCLA, Los Angeles, California, CA 90024, USA.

Abstract. For every finitely generated Coxeter group r we construct an
acyclic complex of dimension vcd r where r acts cocompactly as a reflection
group with finite stabilizers. This provides an effective calculation of vcd F
in terms of the Coxeter diagram of r.

Introduction

A Coxeter system is a pair (r, v) where r is a group (called a Coxeter group)
and V is a finite set of generators for r all of which have order two, such that
all relations in r are consequences of relations of the form (vw)m(t? ) = 1 for
v, w E V and m(v, w) denotes the order of vw in r. In particular, m(v, v) = 1
and m(v, w) = m(w, v) E {2, 3,. .., oo}.
In this note we address the question (see [Pr, problem 1]): What is the virtual
cohomological dimension (vcd) of a Coxeter group?
Every Coxeter group can be realized as a group of matrices (see [Bou]), and
consequently has a torsion free subgroup of finite index (by Selberg's lemma).
Davis [Dav] has constructed a finite dimensional contractible complex (we
review the construction below) where a given Coxeter group acts properly
discontinuously, so that any torsion free subgroup acts freely. It follows from
these remarks that the vcd of any Coxeter group is finite.
All finite Coxeter groups have been classified (see [Bou]), thus providing the
answer to the above question when vcd equals zero. Another special case
(when vcd < 1) was resolved in [Pr-St].
By .F denote the set of all subsets of V (including the empty set) that generate
a finite subgroup of r (recall that for any subset F of V and the subgroup

Supported in part by the Alfred P. Sloan Foundation, the Presidential Young Investigator
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(F) of I' generated by F, the pair ((F), F) is a Coxeter system). Mike Davis
has worked out a method in [Dav] for constructing polyhedra where I' acts
as a reflection group. One produces a panel complex (K, P), i.e. a compact
polyhedron K and a collection P = {PF C K I F E F} of subpolyhedra
(called panels) with the following properties:

1. P,0 = K,
2. each PF is acyclic (and in particular non-empty), and
3. PF, n PF2 equals PF,uF2 when F1 U F2 E F and it is empty otherwise.

Then r acts as a reflection group, cocompactly and properly discontinuously
on the acyclic polyhedron X = r x K/ - , where (-y1, xl) N (rya, x2) q xl =
x2 and y1-1ry2 E (v E V I x1 = x2 E (see [Dav, Theorem 10.1]).
Davis constructs a natural panel complex (KD, PD) associated with a Coxeter
system (r, V) as follows. KD is the (geometric realization of the) complex
whose set of vertices is F, and a subset of F spans a simplex if and only if
it is linearly ordered by inclusion. KD is a cone, with 0 as the cone point.
The panel PF associated with F E F is the union of the simplices of the form
(F1 C F2 C C Fk) with F C F1, and it is also a cone, with cone point
F. The resulting polyhedron XD = r x KD/ - is contractible, and lends
itself to geometric investigation, due to the fact that it supports a metric of
non-positive curvature (see [Mou]). However, for the purposes of calculating
the virtual cohomological dimension of r, this polyhedron is inappropriate,
as its dimension, which always provides an upper bound for vcd IF (see [Dav,
Proposition 14.1]), is too large. For example, when r is finite, vcd r = 0 while
dim XD = card V.
In this note we propose a different panel complex (K, P) with dim K =
vcd r. First let us give an alternative description of the Davis panel com-
plex (KD, PD).
With respect to inclusion, F is a partially ordered set. For every maximal
element F E F define PF to be a point. Let F E F be any element. Assuming
that PF, has been defined for every F' D F, define PF to be the cone on
UF'DF PF'. In particular, KD = PO is the cone on UFO, PF.
We now describe a simple modification in the above procedure that yields a
polyhedron of optimal dimension.

1. The construction

For every maximal element F E F define PF to be a point. Let F E F be any
element. Assuming that PF' has been defined for every F' D F, define PF to
be an acyclic polyhedron containing UF'DF PFi of the least possible dimension.
Of course, most of the time PF is just the cone on UF'DF PF, but there is one
case when we can get away with dim PF = dim UF' F PF'.
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Lemma. If L is a compact n-dimensional polyhedron with Hn(L; IF) = 0 for
every field F E {Q} U {Z, I p prime}, then L embeds in a compact acyclic
n-dimensional polyhedron as a subpolyhedron.

Proof. First note that it suffices to prove the lemma for n > 1 and for
(n - 2)-connected L. (Set L_1 = L and inductively f o r i = 0, 1, 2,. , n - 2,
let Li be Lt-1 with the cone on its i-skeleton attached. Simply replace L with
Ln_2.) The universal coefficients theorem implies that Hn(L; Z) = 0 and that
Hn_1(L; Z) is a free abelian group. If n > 2, 7rn-1(L) Hn_1(L; Z), and we
can attach n-cells to L, one for each basis element of irn_1(L), to obtain a
contractible n-dimensional polyhedron containing L. For n = 2, the Hurewicz
homomorphism ir1(L) -* H1 (L; Z) is surjective, and we can attach 2-cells to
L killing Hi(L; Z) without changing H2(L; Z). The attaching maps can be
chosen to be PL, so the resulting space is a polyhedron.

Continue the construction of the PF's until all panels are built. The last panel
is the one associated with 0, and it is the desired polyhedron K.

Theorem. vcd r = dim K.

Proof. Let n = dim K. Since any torsion-free subgroup of r acts freely
and properly discontinuously on the acyclic n-dimensional polyhedron X =
IF x K/ - , it follows that vcd r _< n (since the simplicial chain complex for
X provides a free resolution of Z of length n). To prove that the equality
holds, we produce a locally finite non-trivial cycle in Hnf (X; F). We can use
this free resolution to compute group cohomology of a torsion-free subgroup
r' of finite index. We obtain Hn(r',Fr') = Hn (X, F), which is nonzero since
the pairing Hn (X, F) 0 Hnf (X; F) -i F is non-degenerate.
First, consider a special case: assume that the last step in the construction
of K involved coning, so that dim (UJ FEF PF) = n - 1. That means that
Hn-1(Ug,EFEF PF; F) # 0 for some field F, or equivalently, that

Hn(K, U PF;F) # 0.
of FEF

Let C be a non-trivial relative cycle. Then C = E,,Er(sgn -y) ry(C), where sgn :
r , 1±1} is the orientation homomorphism, is a locally finite non-trivial
cycle in Hnf (X; F). (It is a cycle since l C is a chain of simplices whose stabi-
lizers are finite and half of the elements are orientation reversing. It is non-
trivial since it evaluates non-zero on each cocycle in Hn(K, U,,,#FEF PF; F) C
HH (K; F) on which C evaluates non-trivially.)
Now, for the general case, suppose that in the construction of the panels,
PFo is the first panel with dim PFo = n. Therefore, PF(, is the cone on
UFJFO PF and Hn_1(UF:)Fo PF; F) # 0 for some field F. Consider the sub-
group r' C r generated by V' = (U{F E F I Fo c F}) N Fo. Again, let
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C represent a non-trivial relative cycle in H,, (PF0, UFDF. PF; F) and define
C = ElEr, (sgn -y) -y(C). Then C is a non-trivial cycle in Hnf(K;F) and thus
vcd l' = n.

2. Example

Let V = {a, b, c, x, y, z} with the Coxeter diagram as in Fig. 1 (if two genera-
tors are not connected by an edge, the order of their product is infinite, and if
they are connected by an edge, the order of their product is 2). The maximal
elements of F are {a, x}, {b, y}, {c, z}, {x, y, z}. The construction yields that
vcd I' = 1, and (K, P) is pictured in Fig. 2. The label of a vertex or an edge is
the subset of V consisting of those v E V such that contains that vertex
or edge.

a

z

x y

b c

Fig. 1 Fig. 2

{b, y}

Remarks.

(1) The same procedure can be used to compute vcdF I' for any field F.
(2) When vcd r # 2, the above construction produces a contractible polyhe-
dron of dimension vcd I' where r acts as a reflection group. I do not know
whether such a polyhedron exists when vcd l' = 2. Concretely, let K be a
non-simply-connected acyclic 2-dimensional full simplicial complex with the
vertex set V. For v E V let P be the star of v with respect to the first
barycentric subdivision of K, and let m(v, w) = 2 when v and w are con-
nected by an edge, and m(v, w) = oc otherwise. As in [Dav] this induces a
right-angled Coxeter group whose virtual cohomological dimension is 2. I do
not know whether or not a torsion-free subgroup G of finite index admits a
2-dimensional K(G, 1).
(3) The construction of (2) for a full triangulation K of the projective plane
IRP2 yields a Coxeter group F. It is not hard to show that vcd r = 3 while
vcdQ I' = 2. A torsion-free negatively curved group with the same properties
was constructed in [B-M].
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The Geometric Invariants of a Group
A Survey with Emphasis on the Homotopical Approach
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1. Introduction
The idea behind the terminology "geometric invariant of a group" is borrowed
from the founding fathers of homological algebra. We consider an abstract
group G and let it act by covering transformations on the universal cover
X of an Eilenberg-MacLane complex, K(G, 1). Then we use X in order to
define an object E*(G) which turns out to be independent of the particular
choice of X, i.e. it is an invariant of G, and which contains rather detailed
information on the internal structure of G. Finally, we take some care to find
an algebraization of the construction G H E"` (G) - not because we dislike
the topological approach, but because we aim to understand it thoroughly by
extending its scope from group rings to general rings and modules.
All this is modelled after the classical approach of Eckmann, Eilenberg-
MacLane and Hopf to group cohomology. Our invariants E*(G), however,
are not Abelian groups but form a descending chain of open subsets

E°(G) D El(G) D ...2E-(G) D ...

of a certain concrete space (in the most important case the R-vector space
Hom(G, Rau)). This is the reason why we call our invariants "geometric".
The issue becomes slightly confusing because they crop up in various brands
according to their concrete definition: The homotopical ones (E*(G)), the
homological ones (E*(G; Z)), and the algebraic ones (E*(G; A)), where A
stands for a G-module. But the situation is not too bad since the first two
are closely related and the latter two actually coincide whenever both are
defined.
The theory grew originally from joint effort with Ralph Strebel to under-
stand the subtle difference between finitely presented and non-finitely pre-
sented metabelian groups in terms of their internal structure - the relevant
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information turns out to be contained in E1(G) or in E°(G/G'; G'). I owe
Ralph a great amount of gratitude for the excellent collaboration over the
past decade; and also to John Groves, Walter Neumann and Burkhardt Renz
for their collaboration in the process of extending the theory to general groups
and higher dimensions.
In this survey the emphasis is put on the homotopical approach due to Renz
(see [R 87] and [R 88]). I feel that this is closest to the intuitive ideas and
best to visualize. The generalization from translation action to arbitrary
essentially isometric action, the concept of horo-connectivity and most of
Theorem A is new; the proofs will appear elsewhere.

2. Essentially isometric action on R

Let g : R -> R be an orientation preserving homeomorphism of the real line.
By the defect of g we mean the quantity

D9 := sup{Id(gI) - d(I)I I all segments I C R},

where d(I) stands for the length of the segment I. Thus D. measures to what
extent g fails to be an isometry. Of course, D9 may be infinite, and if D9 is
finite the set {D9m I M E Z} may be unbounded.
Let G be a group acting on the real line, via a homomorphism p : G -*
Homeo+(R). We say that this G-action p is essentially isometric, if there is a
finite bound on {D,(,) g E G}. We write EI(G) for the set of all essentially
isometric G-actions on R. This is a subset of the set Hom(G, Homeo+(R))
of all G-actions by orientation preserving homeomorphisms and therefore in-
herits the compact-open topology (with respect to the discrete topology on
G and the compact-open topology on the homeomorphism group of R).
If one prefers to work with more concrete subspaces of EI(G) one can fix
a specific group H of essentially isometric homeomorphisms (with bounded
defects!) and focus attention on Hom(G, H). Interesting special cases are:

1. H is the translation group (i.e. Radd). If G is finitely generated then
Hom(G, R) becomes isomorphic to the real vector space R", where n is
the Z-rank of the Abelianization GIG'.

2. H = SL2(R), the universal cover of the Lie group SL2(R), regarded
as a group of homeomorphisms on the circle Sl of all directions in R2.
(This has been suggested by G. Meigniez in [M]). The advantage over
Hom(G, R) is that commutator elements of G may now act non-trivially
on R.

3. H is any other group of homeomorphisms of R lifting a subgroup of
Homeo+(Sl ).
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The action p of G on R is said to be degenerate if it satisfies one of the
following three conditions (which are equivalent under the assumption that
p E EI(G)).
(a) Every G-orbit is bounded.
(b) Every element g E G has a fixed point.
(c) G has a global fixed point.

We will usually have to exclude degenerate actions. The set of all non-
degenerate actions of EI(G) is open in EI(G).

3. The homotopical geometric invariant E*(G)
Let G be a group. By an Eilenberg-MacLane complex for G, or a K(G, 1),
we mean a connected CW-complex with fundamental group G and vanishing
higher homotopy groups. Following C. T. C. Wall we say that G is of type F,,,,
m E No, if G admits an Eilenberg-MacLane complex Y with finite m-skeleton
Ym. Throughout the paper we will assume that the group G is of type Fm
for some fixed m, and that X is the universal covering complex of a K(G, 1)
with finite m-skeleton.
Let p E EI(G) be a non-degenerate essentially isometric action of G on
Any continuous equivariant map h : X -+ R shall be called an equivariant
height function on X. It is not difficult to see that equivariant height functions
always exist and that any two such are equivalent on the m-skeleton Xm, in
the sense that there is a constant D E R such that Jh(x) - h'(x)l < D, for
all x E Xm. Moreover, by using a simplicial subdivision of the cells of X,
one can actually find a continuous map from Hom(G, Homeo+(R)) into the
space of all continuous functions C(X, IIt) which picks, for each G-action p, a
corresponding equivariant height function.
Given any G-equivariant height function h : X -> IR we let Xh C_ X be the
maximal subcomplex of X contained in h-1([0, oo)).
One might be tempted to define a subset of EI(G) by considering all non-
degenerate essentially isometric G-actions on IR with the property that Xh is
k-connected. Unfortunately, the connectivity properties of Xh depend heavily
on the choice of Y and h (it is only for k = 0 where one can make this work
by restricting attention to the Cayley graph and take h to be linear on edges).
Therefore we regretfully have to put

Definition. The geometric invariant Em(G) C EI(G) is the set of all non-
degenerate essentially isometric G-actions on R with the property that there is
a suitable choice forX = Y and h : X ---> R such that Xh is (m-1)-connected.

The connectivity condition is empty if m = 0 and so E°(G) consists of all
non-degenerate actions in EI(G). For completeness we put Em (G) = 0 if G
is not of type Fm.
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4. Criteria and openness result
As before, let p be a non-degenerate essentially isometric action of G on R, let
X be the universal cover of a K(G, 1) with finite m-skeleton and h : X - IR
an equivariant height function. We shall now exhibit criteria for p to be in
Em(G), in terms of connectivity properties which are weaker than (rn - 1)-
connectivity of Xh but are independent of all choices. All these properties use,
in a sense, the R-graded filtration of X by Xhr'°°l , the maximal subcomplex
of X contained in h-1([r,oo)), for r E R.

A: Essential-connectivity. We say that Xhr'°°> is essentially k-connected,
for some k > -1, if there is a real number d > 0 with the property that the
map

L : 1f{(Xhr,oo)) ii(Xhr-d'oo)),

induced by inclusion, is zero (i.e. has singleton image) for all i < k. (The
condition is empty for i = -1). It is not difficult to see that if Xhr'-) is
essentially k-connected for some r E IR then it is so for every r E IR with a
uniform choice of d.

B: Horo-connectivity. Let Z be a locally compact topological space. We
call a continuous map f : Z - X horo-continuous (with respect to h), if the
subspaces Z(r) = {z E Z I h(f(z)) < r} are compact for all r E R.

Remark. Thus f is horo-continuous if it is proper with respect to two spe-
cific filtrations on Z and X, respectively: the filtration on Z given by an
exhausting chain of compact neighbourhoods, and the filtration on X by
h-1((-oo,r]), r E R, (or, equivalently, by the closure of the complements of
Xhr'°°) in X). For the concept of proper maps and proper homotopy with
respect to filtrations see the forthcoming book of Ross Geoghegan. Our
terminology follows the intuition that sequences {x; E X I i E N} with
lim h(xi) = oo "approach the boundary".
t°°

We now say that X is horo-k-connected (with respect to h), if each horo-
continuous map f : R' --> X extends to a horo-continuous map f : R' x
[0,oo)--+X,for all i<kand k>0.

Theorem A. Let G be a group of type F,,, and p : G - Homeo+(R) a non-
degenerate essentially isometric action of G on R. Let X be the universal
cover of a K(G, 1) with finite m-skeleton and h : X --+ R an equivariant
height function. Then the following five conditions are equivalent
(i) p is in Em(G).

(ii) Xh is essentially (m - 1)-connected.
(iii) X is horo-m-connected.
(iv) There is a continuous cellular G-equivariant map cp : X' --+ X' with

+(x)) > h(x) + e for all x E Xm and some e > 0.
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(v) There are real numbers e, ,u with e > 0, and a continuous cellular G-
equivariant map a : Xm x [0, oo) -+ X such that o(-, 0) is the embedding
Xm C X and

h(v(x, t)) > h(x) + et + p, for all x E Xm, t E [0, oo).

Corollary Al. The assertions (i) - (v) in the theorem are independent of
the particular choice of X and h : X -4 R.

For every real number D > 0 we consider the subset EID(G) C EI(G)
consisting of all G-actions with defects globally bounded by D. Note that,
e.g. Hom(G, SL2(R)) C EI2,(G), so that the following corollary answers
Meigniez' question 2 on p. 305 in [M].

Corollary A2. For each D > 0 the subset Em(G) fl EID(G) is open in
EID(G). -
Proof. Let P E EI(G) be in this subset. Upon replacing the map cp by
a power cpr', if necessary, we may make the number a in condition (iv) as
big as we wish; we want it to bee = D + 3e' for some e' > 0. Next we
choose a compact subset C C Xm with GC = Xm and a continuous map
EI(G) -> C(X,R) which assigns to each p' E EI(G) an equivariant height
function h' : X -i R. We can then choose p' sufficiently close to p so that the
difference of h and h', when restricted to C, is at most e'. This implies that

Ih'(So(c)) - h'(c) I > D + e', for all c E C.

As D is a global bound for the defects it follows that

lh'(cp(x)) - h'(x)l > e', for all x E X.

Hence (iv) still holds true for p replaced by p' and e replaced by e'. This
shows that p' is in Em(G), and proves the assertion.

5. The homological geometric invariant E*(G; Z)

It is a straightforward matter to write down the homological version of the
homotopical concepts of Sections 3 and 4. As above, let X denote the univer-
sal cover of a K(G, 1) with finite m-skeleton and h : X -+ R a G-equivariant
height function. Along the lines of Section 3 we define E- (G; Z) to be the
set of all non-degenerate essentially isometric G-actions on IR with the prop-
erty that there is a suitable choice for X and h : X --+ R such that Xh is
(m - 1)-acyclic. (The notation involving Z will turn out to be convenient
later.)
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From this definition it is obvious that one has an inclusion Em(G) c Em(G; Z),
for each m, since (m - 1)-connected spaces are (m - 1)-acyclic. Moreover,
this inclusion is an equality for m = 0 and m = 1. That is trivial for m = 0
and obvious for m = 1 since the concepts of connectivity and 1-acyclicity
coincide for CW-complexes. It is conceivable that Em(G) = Em(G; Z) for all
m, but that is an open problem. To prove this for m = 2 would imply it for
arbitrary m because we can show

Theorem B. If G is a group of type then Em(G) = E2(G) n Em(G; Z).

Sketch of proof. Assume p E E2(G). By definition one can choose X and h
such that Xh is 1-connected. If p is also in Em(G; Z), then Xh is essentially
(m - 1)-acyclic by Theorem A. By the method which is also used to prove
the implication (ii) = (i) in Theorem A, one can modify X, in terms of
elementary expansions in the sense of simple homotopy theory, so that Xh
remains 1-connected but is also (m-1)-acyclic. The Hurewicz Theorem then
asserts that Xh is (m - 1)-connected, i.e. p E Em(G). This establishes the
non-trivial inclusion of Theorem B.

The proof of Theorem A carries over to the homological invariant E*(G; 7Z).
We may omit the proof at this stage since it will be covered by the alge-
braic result Theorem C. But it is most instructive to translate, at least intu-
itively, the concepts of essential connectivity and horo-connectivity. Clearly
Xh should be called essentially k-acyclic if there is a real number d > 0 such
that inclusion induces the zero map

Hi(Xh) - Hi(Xh
d -))'

for all i < k (reduced homology). To translate horo-connectedness into horo-
acyclicity is more interesting: Corresponding to continuous maps f : R' ->
X we consider infinite locally finite i-chains of X (ordinary i-chains would
correspond to continuous maps Si - X). Let C(X) c C°° (X) denote the
cellular chain complexes of ordinary and infinite chains, respectively. Every
chain c E C°°(X) is carried by its support supp(c) c X which is the union of
all cells involved in c. Now, the condition on a chain c E C°°(X) which would
correspond to horo-continuity of a map f : Ri -p X is, that the intersections
supp(c) n h-' ((-oo, r]) are compact for all r E R. In other words, c involves,
for every r E R, only a finite number of cells e outside Xhr'°°l. Let us write
C(X) for the subcomplex of all chains c with this property. Then X should
and will be termed horo-k-acyclic with respect to h if H2(C(X)) = 0, for all
i < k.
In order to prepare algebraization of these concepts we have to replace all
data of the space X by data on the chains of X. In particular, we can replace
the equivariant height function h : X --> R by the map v : C(X) -* R,,. given
by v(c) = inf h(supp(c)). Here, R,,, stands for the real numbers supplemented
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by an element oo which satisfies r < oo and r + oo = oo for every r E Rg;
and inf 0 = oo. One observes readily that both essential- and horo-acyclicity
can be rephrased in terms of v.

6. Algebraization

We are now in a position to introduce the algebraical geometric invariants
E*(G; A). We do this in two steps. First we mimic the situation of the
cellular chain complex C(X) of Section 5 in an arbitrary ZG-free resolution;
then we reinterpret the result in more familiar algebraic terms.

6.1. As before, let G act on IIt by some non-degenerate action p E EI(G).
Let A by a G-module. By a valuation on A we mean an equivariant map
v : A -+ R., satisfying

(i) v(a + b) > inf {v(a), v(b)},
(ii) v(-a) = v(a),

(iii) v(0) = oo.

for all a, b E A. If v and w are two valuations on A, we say that v is dominated
by w, (written v _< w), if there is some r E IR such that v(a) < w(a) + r, for
all a E A. If v and w dominate each other we say that they are equivalent.
Valuations can rather easily be constructed on a free G-module F. Indeed,
if X is a basis of F then every map v : X -* R can first be extended to a
G-map v : GX - R and then, by putting

v(c) = inf v(supp(c)), c E F,

to a valuation on F; here supp(c) stands for the set of all elements of the
Z-basis GX occurring with non-zero coefficient in the expansion of c. Let
us call a valuation which is obtained in this way naive (with respect to X).
One observes readily that if X is finite then v is dominated by every other
valuation on F. This applies, in particular, to every naive valuation with
respect to some other basis X'. Hence the naive valuations on a finitely
generated free G-module F define a canonical equivalence class. Associated
to this we thus have the unique equivalence class of filtrations given by

(6.1) Fir,') := {c E F I v(c) > r}, r E R.

A G-module A is said to be of type FPm if it admits a free resolution F

0,

with finitely generated rn-skeleton F(m) := $m Fi. In order to mimic the
i=o

topological situation we may assume that F is given with a ZLG-basis X C F
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with the property that 0 U. It is clear that such resolutions always
exist and we call them admissible. As naive valuations can achieve arbitrary
prescribed values on X we can pick naive valuations vi : F; -> R00 in such
a way that v;_18 > vi, for all i. Let v : F -> Rm denote the collection of
all vi. Note that each FI'''°°) is a sub-chain complex of F; for convenience we
abbreviate F := F1°'°°). Furthermore, we write F or F,, for the corresponding
augmented chain complexes with A in dimension -1, endowed with the zero
valuation v_1(A - {0}) = 0.
The topological concepts of Sections 3-5 are now easily translated. We start
with the definition of Em(G; A) by putting p E Em(G; A) if and only if there is
a suitable choice for F and v, as above, such that F,, is exact in all dimensions
less than m.
Next, we say that F['''°°l is essentially k-acyclic, for k > -1, if there is a
real number d > 0 such that every i-cycle z of F, with -1 < i _< k, is the
boundary of an (i + 1)-chain c of F with v(c) > v(z) - d.
Finally, we consider the set F of all formal sums >°_o nibi with ni E Z and
bi E GX, such that {i I ni 0, v(bi) < r} is finite for each r E R. Then Fl'"1
is a chain complex containing F(m) as a subcomplex and at the expense of
restricting attention to locally finite chains one can extend this to the (m+1)-
skeleton. We say that F is horo-k-acyclic, for some k with 0 < k < m, if F is
exact in all dimensions less than or equal k (including zero!).
Exactly parallel to Theorem A one can now state and prove

Theorem C. Let A be a G-module of type FP1, and F --N A an (admissible)
free resolution with finitely generated m-skeleton F(m). If P E EI(G) is non-
degenerate and v : F -+ R,,. is a naive valuation on F, then the following
conditions are equivalent:

(i) p E Em(G; A),
(ii) F,, is essentially (m - 1)-acyclic,

(iii) F is horo-m-acyclic,
(iv) there is a G-equivariant chain map cp : F -* F lifing the identity of A

with v((p(c)) > v(c) + e for all c E F(m) and some e > 0.

The equivalence of (iii) and (iv) for the case of translation action is due to J.
C. Sikorav [S]. The remaining assertion (v) of Theorem A seems rather less
interesting in the homological context. As in Section 4 we deduce

Corollary C1. The assertions (i)-(iv) in Theorem C are independent of
the particular choice of F and v.

Corollary C2. Em(G; A) fl EID(G) is open in EID(G).

Moreover, if G is of type Fm and A is the trivial G-module Z then, choosing
F = C(X) (as in Section 5) and using either of (ii), (iii) or (iv) to describe
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Em (G; Z), we can show that this algebraically defined invariant coincides with
the homological one defined in Section 5.

6.2. So far we have been following as closely as possible the guideline provided
by the topological arguments. It is now time to give up this principle and
reinterprete the results in more traditional algebraic terms.
In the group G we consider the submonoid G, = {g E G ( gr > r for all
r E R}. First, we observe that (6.1) is actually a filtration in terms of Gv-
submodules. Next, we pick any element g E Gp which has no fixed points
in R and obtain an ascending chain G. C GPg-' C_ Gpg_2 C ... exhausting
G. This shows that the group ring ZG is an ascending union of cyclic free
ZGp-modules and hence 76G is flat over ZGp. We are now in a position to
prove

Proposition D1. p E E- (G; A) if and only if the G-module A is of type
FP,n over ZG,.

Proof. We have verified the assumptions needed to apply K. S. Brown's
method to deduce, from the essential acyclicity condition (ii) of Theorem C,
that if p E Em(G; A) then A is of type FPm over 7ZG, (see [BR], Appendix
to 3). Conversely, assume that the G-module A admits a ZGP free resolution
E -» A which is finitely generated in dimensions less than or equal M. The
tensor product with ZG over ZGp then yields a ZG-free resolution F -»
76G ®Gp A with finitely generated m-skeleton Fm. But ZG ®Gp A is easily
seen to be isomorphic to A, since A is a G-module. Now using the naive
valuation on F, which is zero on the original basis of E, yields F = E,
whence p E Em(G; A).

Let us now consider the filtration of the group G in terms of the subsets

nEN,

and let 2G denote the completion of the group ring with respect to the
corresponding filtration of ZG by the ZGP ideals ZG(n), n E N. 2G is a ring
which contains ZG as a subring. It has an explicit description as the set of all
formal series ) = En,g over 7G (i.e. functions A : G -> Z) with the property
that each G(n) contains almost all of the support supp(A). As usual one
also obtains corresponding completions for (finitely presented) G-modules by
tensoring with 2G over ZG. In any case one can show that the complex F
of infinite chains used to define horo-acyclicity is essentially isomorphic to
76G ®G F, whence

Proposition D2. p E Em(G; A) if and only if TorrG(7GG, A) = 0 for all
0<i<m.
In the case of translation actions this was proved by J.C. Sikorav [S].
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7. Some applications

This section contains some applications which I find particularly attractive.
All of them are concerned with the translation subspace of EI(G), i.e. the set
Hom(G, R) of all homomorphisms of G into the translation group Rall of R.
Let us throughout assume that G is finitely generated, so that Hom(G, R)
Rn' where n is the Z-rank of the Abelianization of G. More details and more
applications can be found in the forthcoming set of notes [BS 92].

7.1. Normal subgroups. Let N a G be a normal subgroup with Abelian
factor group Q = GIN, and let k be the Z-rank of Q. Then the map induced
by the projection G -- Q embeds Hom(Q, R) = R' into the translation
subspace Hom(G, R) C EI(G).

Theorem E. [R 88, BR] Assume that the group G is of type Fm (resp.
FPm). Then the normal subgroup N is of type Fm (resp. FPm) if and only if
Hom(Q, R) C Em(G) (resp. C Em (G; Z)).

A similar result holds also for Em(G; A). The geometric invariants thus con-
tain full information on the Fm-type (resp. FPm) of normal subgroups above
the commutator subgroup. The conjunction of Theorem E with Corollary A2
yields an openness result on the subset of those which are of type Fm (resp.
FPm).
Holger Meinert has applied Theorem E to compute the Fm-type of N in the
case when G is the direct product of finitely many free groups [Mt]. It turns
out that FPm coincides with Fm in this situation.

7.2. Finite presentations. One of the original motivations for introducing
geometric invariants was the aim of understanding the impact of finiteness as-
sumptions on the internal structure of a group. The statement of the following
result uses the map EI(G) - EI(G), p -+ -p, where -p: G -* Homeo+(R)
is given by (-p)(g)(r) = -p(g)(-r).

Theorem F. [BS 80] Let G be a finitely generated group which contains no
free subgroups of rank 2. If G is finitely presented then

(7.1) Hom(G,R) C -El(G) U E'(G).

Moreover, if G is metabelian then G is finitely presented if and only if (7.1)
holds.

The inclusion (7.1) is inherited by all factor groups of G, whence the

Corollary Fl. If a finitely presented group contains no free subgroups of
rank 2 then its metabelian factor groups are finitely presented.

The corollary is easier to appreciate for those who know Herbert Abels' ex-
ample of a finitely presented soluble group with a non-finitely presentable
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centre-by-metabelian factor group [A 79]. Another instance where a converse
of Theorem F is available is given by Abels' impressive result

Theorem F2. [A 87] Let G be an S-arithmetic subgroup of a soluble
connected algebraic group over a number field. Then G is finitely presented if
and only if (7.1) holds and H2(G'; Z) is a finitely generated G/G'-module.

It is conceivable that, for metabelian groups G, the invariant E'(G) contains
the information whether G is of type Fm (resp. FPm). We have reasons to
think that the following might be the answer.

Conjecture. [B 81] A metabelian group G is of type Fm if and only if the
complement of E' (G) in Hom(G,1R) has the property that every subset of m
non-zero points is contained in an open half space of Hom(G, IR).

Note that Theorem F establishes the conjecture for m = 2. The conjecture
has been proved to hold true for metabelian groups of finite rank (Aberg[A]).
For related Theorems "over a field" see [BG 82].

8. Polyhedrality

In view of the applications in Section 7 it is of considerable interest to
compute the intersection of E'(G) C_ EI(G) with the translation subspace
Hom(G; R) = R" in specific situations. This seems not to be an easy matter
in general. In each instance where we were able to do it, it turned out to
be polyhedral (i.e. a finite union of finite intersections of open half spaces of
R'). In most cases these polyhedral sets were rationally defined (i.e. the cor-
responding half spaces given by Diophantine inequalities); but non-rationally
defined ones do exist (cf. [BNS], [BS 92]).
We mention two specific results; many more examples are to be found in
[BS 92].

Theorem G1. [BG 84] If G is a finitely generated metabelian group then
E' (G) fl Hom(G, lR) is polyhedral and rationally defined.

The core of the proof is a curious result on Krull valuations on a field K: the
set of all values that valuations K -> R,,. can achieve on a fixed sequence
(al, a2.... , an) E K" is a rationally defined closed polyhedral subset of I8".
If G is the fundamental group of a 3-manifold M then Hom(G; R) = H' (M;R)
and its rational points, Hom(G, Z) = H' (M, Z), can be interpreted as the
set of homotopy classes [M, S']. Those which correspond to fibrations are
collected by certain faces of the unit sphere of Thurston's norm [T]. Based
on this and Tischler [Ti], Walter Neumann proved
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Theorem G2. [BNS] If G is a 3-manifold group then E' (G) n Hom(G, R)
is the union of the open cones defined by all faces of the Thurston norm whose
rational points correspond to fibrations. Consequently, it is a disjoint union of
finitely many rationally defined convex polyhedral open cones and is invariant
under p i-+ -p.

Thurston has proved that any open subset of Rn, as described in Theorem G2,
is the set E'(G) n R' for some 3-manifold group [T]. Similarly, one can show
that every open rationally defined polyhedral subset of Rn is the set E'(G) n
IR for some other group G (see [BNS], [BS 92]).
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String Rewriting - A Survey for Group Theorists

Daniel E. Cohen

Department of Mathematics, Queen Mary and Westfield College, Mile End Road,
London, El 4NS.

Term rewriting can be described as the theory of normal forms in algebraic
systems. The related notion of string rewriting is the theory of normal forms
in presentations of monoids. Both these theories, especially the latter, should
therefore be of interest to group theorists. However, they are better known
to computer scientists, who use them to discuss such matters as automatic
theorem proving.
With the present employment situation, as jobs are easier to find in computer
science than in mathematics, young mathematicians may be glad to find
branches of computer science with an algebraic flavour, and rewriting systems
are of this nature. One of the experts in the field, Ursula Martin, began her
mathematical career as a group theorist, and others who started in group
theory have worked with her.
Recall that a monoid is a set with an associative multiplication and an identity
(thus monoids differ from groups because elements need not have inverses).
For any set X, the free monoid X* on X is the set of all finite sequences of
elements of X (including the empty sequence) with the obvious multiplication.
The empty sequence is the identity for this multiplication, so we usually
denote it by 1. The elements of X* are called strings or words.
A rewriting system 1Z on X is a subset of X* x X*. If (1, r) E 1Z then, for
any strings u and v, we say that the string ulv rewrites to the string urv, and
write ulv -- urv. For any string w, we say that w is reducible if there is a
string z such that w --+ z; if there is no such z we call w irreducible. We write
`> for the reflexive transitive closure of -> and - for the equivalence relation
generated by -*. We say that the strings u and v are joinable, written u J. v,
if there is a string w such that u - w and v - w. We add the subscript R
if it is necessary to look at two or more rewriting systems.
The quotient X*/- is a monoid, which we call the monoid presented by
(X; 1Z). The distinction between regarding 1Z as giving a presentation and
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as being a rewriting system is that in the former case our attention is on
while in the latter it is on -*+.
The example of a rewriting system most familiar in group theory comes
in the definition of a free group. The free group on X can be regarded
as the monoid (X U X-1)*/-, where - comes from the rewriting system
{(xx-1, 1), (x-1x,1); all x E X}. This example should be borne in mind
when considering the results which follow.
If we are looking for normal forms for the elements of the monoid presented
by (X; R) the obvious choices are the irreducible elements. For this to be
satisfactory, we would require that there is exactly one irreducible element in
each equivalence class.
But there is an even more fundamental requirement; namely, that the normal
form corresponding to an element can be obtained by repeated rewriting.
Thus we call R terminating if there is no infinite sequence w1 - w2 --*
... -> wn -> ... (R is also called well founded or noetherian; we are using the
notation in [14]). This is most easily achieved by requiring that III > Irl for
all (1, r) E R, in which case we call 1Z length-reducing. It can also be achieved
if III > Irl for all (l, r) E R and, further, if Ill = Irl then r precedes 1 in
the lexicographic order induced by some well-order on X; when this happens,
we shall refer to R as a lexicographic rewriting system. The study of other
sufficient conditions for termination in string rewriting and the more general
term rewriting is a major research topic in the theory; see [13] for more on
this.
A rewriting system is called a Church-Rosser system if u - v implies u j v,
and is called complete if it is both terminating and Church-Rosser (such
a system is sometimes called "canonical"; [14] suggests calling such a sys-
tem "convergent", but I prefer the traditional word "complete"). Plainly an
equivalence class in a Church-Rosser system contains at most one irreducible
element. Also a terminating system in which each equivalence class contains
only one irreducible element is Church-Rosser.
A rewriting system is called confluent if to `* u and w -% v implies u 1 v. It
is easy to see that a system is Church-Rosser iff it is confluent. The neatest
way of showing this is to observe that if the system is confluent then I is
transitive.
A rewriting system is called locally confluent if w --> u and w -4 v implies
u j v. A terminating locally confluent system is confluent. This result is
sometimes known as the Diamond Lemma; it was first proved in [28] (see also
[11] for a version of the proof, and [4] for further results). The proof is fairly
easy, using an inductive principle which can be formulated for terminating
systems.
Note that the results of the previous paragraphs apply to an arbitrary rela-
tion -+ on an arbitrary set, and do not require that -* comes from a string
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rewriting system (or a term rewriting system). It is interesting to observe
that this theory was used in [28] to obtain the Normal Form Theorem for free
groups and also to obtain normal forms in the A-calculus; the latter is closely
related to the theory of functional programming in computer science.
Jantzen's book [20] contains numerous interesting results on string rewriting,
and is a valuable reference. Complete rewriting systems for presenting various
interesting groups are given in [25]. Small cancellation theory is also looked
at in [25] and [3], where it is shown that the main results of that theory
can be obtained in the current context. Jantzen's book contains a long list
of references to results in the theory. Conferences on Rewriting Techniques
and Applications are held regularly; their Proceedings are published in the
Springer Lecture Notes in Computer Science, and usually include surveys as
well as more technical material. Interesting papers have appeared in many
computer science journals, such as Journal of Symbolic Computation, Journal
of Computer and System Sciences, and Information and Computation.
There are many special results in the theory which are of interest to group
theorists, and I mention only two of them. It is easy to see that the free
abelian group of rank n cannot be generated as a monoid by n generators
but it has a finite presentation on m generators if m > n. However [15], this
group is presented by a finite complete rewriting system on m generators if
m > 2n.
An abelian subgroup of a free group is infinite cyclic, and an abelian subgroup
of the free product of finite groups is either infinite cyclic or finite. Both
these groups may be presented by a finite complete length-reducing rewriting
system, namely {(xx-1, 1), (x-1x,1) I x E X} for the free group on X, and
{(ab, c) I a, b, c E Gi for some i and ab = c in Gi} on the alphabet U Gi for
the free product * Gi. Now let G be any group which can be presented by
a finite complete length-reducing rewriting system. According to [26], any
finitely generated abelian subgroup of G is either infinite cyclic or finite. If
G has non-trivial centre then G itself is either infinite cyclic or finite. Also,
if G has a non-trivial finite normal subgroup then G is finite.
It is not possible to decide whether or not a finite rewriting system is terminat-
ing, confluent, locally confluent, or complete (see [20] for details). However,
if a finite system is known to be terminating we can decide whether or not it
is complete, using a criterion due to Knuth and Bendix [23] given below.
Let R be a terminating system. For each string w choose an irreducible
string S(w) such that w - S(w). This can be done arbitrarily, but if we wish
to perform an algorithmic process we could require S(w) to be obtained by
always rewriting the leftmost substring possible.
We call the triple of non-empty strings u, v, w an overlap ambiguity if there
are r1 and r2 such that (uv,ri) and (vw,r2) are in R; we then say that rlw
and ur2 are the corresponding critical pair. The triple u, v, w of possibly
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empty strings is called an inclusion ambiguity if there are r1 and r2 (which
must be distinct if both u and w are empty, but otherwise may be equal)
such that (v, ri) and (uvw, r2) are in R; we then say that urlw and r2 are
the corresponding critical pair. If p and q are the critical pair corresponding
to an (overlap or inclusion) ambiguity u, v, w then uvw -4 p and uvw -* q.
Let R be a terminating system. For any critical pair p, q we have S(p) = S(q),
and so, if R is complete then S(p) = S(q). Conversely, if S(p) = S(q) for
all critical pairs p, q it is easy to see that R is locally confluent, and hence
complete. Evidently, when R is finite we can decide whether or not this
condition holds. Note that it would be enough to know that for any critical
pair p, q we have p 1 q, which is sometimes easier to check.
The rewriting systems R and S are called equivalent if =R is the same as =g;
this condition is stronger than saying that the monoids presented by (X; R)
and (X; S) are isomorphic. Any rewriting system is equivalent to a complete
one, as is shown by the Knuth-Bendix procedure [23] given below.
Let R be a lexicographic system (and hence a terminating system). Let R'
be obtained from R by considering all critical pairs p, q such that S(p) 54 S(q)
and adding to R for such a critical pair either (S(p), S(q)) or (S(q), S(p));
the choice of pairs to add is to be made so that R' remains lexicographic.
Evidently R is complete iff R' = R. Because S(p) =R S(q), R' is equivalent
to R.
Now let R be an arbitrary system. Let Ro be obtained from R by replacing
some of the pairs (1, r) by (r, 1) in such a way that Ro is lexicographic. Induc-
tively, define Rn for all n by Rn+1 = (R, )', and let R,,,) = Un R. It is easy to
check that I Z,,, is lexicographic and equivalent to R. Consider a critical pair
p, q for R. Then p, q is a critical pair for Rn for some n. Letting S,,(p) and
S,,(q) be the chosen irreducibles for Rn corresponding to p and q, we know
that either S,,(p) = S,,(q) or one of (S,,,(p), S,,(q)) and (S,,(q), Sn(p)) is in
Rn+1. Hence p 1 q for Rn+1 and so also for R.. Thus, by the Knuth-Bendix
criterion, R,,, is complete.
The restriction to lexicographic systems is made to avoid problems with ter-
mination. If we simply know that Rn is terminating, we have to decide which
of the two pairs to add in each case, and then try to show that Rn}1 is also
terminating. This process (in the more general case of term rewriting) has
been much investigated, and there are computer programs aimed at perform-
ing this process either automatically or interactively, with backtracking as
necessary (that is, if Rn+1 is not terminating - or one cannot easily see that
it is terminating - then we may reconsider the choices made for Rn or at
earlier stages).
When R is finite then each Rn is finite, but R,,, may be infinite. If, for some
n, Rn+l = Rn then Rn is complete and R. = R. It follows that R is
equivalent to the finite complete system Rn. Conversely, if R is equivalent to
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some finite complete system then [25] there is some n such that 1Z is equivalent
to R.
The rewriting system {(aba, bab)} on the alphabet {a, b} has no equivalent
finite complete rewriting system [21]. However, an isomorphic monoid may be
presented on the alphabet {a, b, c} by the rewriting system {(ab, c), (ca, bc)}.
This system is not complete, but the completion process gives the equivalent
finite complete system {(ab, c), (ca, bc), (bcb, cc), (ccb, acc)}.
This example leads us to ask what properties are satisfied by a monoid which
has (with respect to some set of generators) a presentation by a finite com-
plete rewriting system. One necessary condition is that the monoid has a
sovable word problem (recall that if the word problem is solvable in one fi-
nite presentation then it is solvable in every finite presentation). For let the
monoid be presented by (X; R), where R is a finite complete system. Since
R is terminating and finite, we can calculate for each string u an irreducible
string S(u) such that u - S(u). Then the word problem for this presentation
is solvable, since u - v if S(u) = S(v).
Groves and Smith [17] investigate how the property of being presented by a
finite complete rewriting system behaves under various group-theoretic con-
structions (subgroups, quotient groups, wreath products, HNN extensions,
etc.). In particular, they show that constructable soluble groups (see [2]) are
presented by finite complete rewriting sytems; conversely, metabelian groups
presented by finite complete rewriting systems are constructable, and they
ask whether any soluble group presented by a finite complete rewriting sys-
tem is constructable. They show that if A is a subgroup of the group G and
A can be presented by a finite complete rewriting system then so can G if
A has finite index in G and also if A is normal in G and such that G/A can
be presented by a finite complete rewriting system. When A has finite index
in G and G can be presented by a finite complete rewriting system it is not
known whether A must be presentable by a finite complete rewriting system.

A break-through occurred in 1987 when Squier [29] showed that a monoid with
a presentation by a finite complete rewriting system satisfies a homological
condition, from which he was able to give examples of monoids with no such
presentation. It was subsequently noticed that an earlier paper by Anick
[1] had, using very different terminology, obtained a stronger homological
condition.
A free resolution of a monoid M is an exact sequence

Pn_1->...->Pl-+ZM-+Z--+ 0

of free ZM-modules. M is called FPS if there is a free resolution such that
Pi is finitely generated for all i, and it is called FP,, if there is a free resolution
with Pi finitely generated for all i < n. Squier proved that a monoid which
can be presented by a finite complete rewriting system is FP3, while Anick's
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result shows that such a monoid is FPS. For a monoid, as distinct from a
group, we have to specify whether we are using left modules or right modules
(an example of a monoid which is right FPS but not left FP, is given in [10]),
but since there is left-right symmetry in the definition of a finite complete
rewriting system, these monoids are both left FPS and right FPS.
Anick's result is much stronger, and obtains a free resolution from a (not
necessarily finite) complete rewriting system. We say that a rewriting system
is reduced if it has no inclusion ambiguities and for each (1, r) E R the string
r is irreducible. It is strongly reduced if it is reduced and each element of X is
irreducible. It is easy [22] (se also [29]) to obtain a reduced complete rewriting
system equivalent to a given complete rewriting system (if the original system
is finite then the reduced system will also be finite), and we can immediately
obtain a strongly reduced complete system which presents an isomorphic
monoid (this system will not be equivalent to the previous one, since the set
of generators is different).
Anick constructs a free resolution corresponding to a strongly reduced com-
plete rewriting system. The free generators of each P,, are certain repeated
overlaps, from which it is easy to see that the monoid is FPS if the system
is finite. Anick constructs the boundary maps and contracting homotopies in
the resolution simultaneously by a complicated inductive process, involving
not only boundary maps and contracting homotopies on elements of smaller
degree but also their values on earlier elements of the same degree. The effect
is that it is not possible to get a clear understanding of what is happening,
and, although the construction can in principle be used for computation of ho-
mology, the definition of the boundary is too complicated to make his method
practical. A subsequent generalisation and simplification by Koboyashi [24]
still has the same problems.

The situation was elucidated by Brown [5] using a topological approach (the
result was also proved by Groves [16], whose technique is intermediate be-
tween those of Anick and Brown). He showed that a strongly reduced com-
plete rewriting system (in fact, he looked at the irreducibles rather than at
the system itself) gives rise to a structure which he called a collapsing scheme
on the bar resolution (which is a large resolution which can be obtained for
any monoid), and that this collapsing scheme enables one to replace the bar
resolution by a smaller resolution. The whole situation now becomes clear,
and the boundary operators can be easily calculated. Thus the theorem not
only enables us to use homological methods to obtain results about rewriting
systems, but also enable us to use rewriting systems to prove results in the
homology theory of groups. Brown's paper is very beautiful and contains
some elegant calculations. In particular, the "big resolution" for the monoid
(xi (i E N); (xjxi, xixj+1) for i < j) constructed in [7] comes from the collaps-
ing scheme corresponding to this complete rewriting system, and the proof
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that this monoid (and the group with the same presentation) is FPS uses a
new collapsing scheme on this resolution.
Brown's proof in [5] is topological, and he leaves it to the reader to trans-
late the proof into an algebraic form. I think that there are likely to be
people interested in Brown's work but unfamiliar with the topology. Such
people should nonetheless have no difficulty in obtaining a general overview
of the results from his account, and they should find the specific calculations
straightforward and interesting. But I feel it is worthwhile to give an explicit
algebraic translation of his proof, so that such readers do not have to take his
main theorem on trust.
We begin with a chain complex

of free modules over a ring A. We require not only that each P is a free
module but also that a specific basis is chosen for each Pn; the elements of
this basis are called n-cells. A collapsing scheme on P is defined to consist
of the following:
(1) a division of the cells into three pairwise disjoint classes, which we refer

to as the essential, redundant, and collapsible cells, with all 0-cells being
essential and all 1-cells being either essential or redundant;

(2) a function, called weight, from the set of all redundant cells into N;
(3) a bijection, for each n, between the set of redundant n-cells and the set of

collapsible (n + 1)-cells, such that, if the collapsible cell c corresponds to
the redundant cell r, then there is a unit u of A for which all redundant
cells in the chain r - uOc have weight less than the weight of r (in
particular, if r has weight 0 then r - uac contains no redundant cells).

The motivation for this definition, and various examples, can be found in [5].
The weight is often given implictly, rather than explicitly, by the following
procedure. Let S be an arbitrary set, and let > be a binary relation on S such
that, for all s, {t; s > t} is finite (thus, we should think of s > t as meaning,
not "s is greater than t", but as "t is a child of s" or "t is used in S"). It is then
a well-known (and easy to prove) result, sometimes called Konig's Lemma,
that if, for some s, there are sequences s > sl > ... > sn for arbitrarily large
n then there is an infinite sequence s > s1 > ... > sn > sn+1 > ... It follows
that if > is terminating then, for each s there are only finitely many n for
which there is a sequence s > ... > sn, and the maximum such n may be
called the weight of s. In particular, if s > t, then s has greater weight than
t.
We can now state and prove the algebraic form of Brown's theorem. If the
free chain complex P has a collapsing scheme then it is chain-equivalent to a
free chain complex Q for which the essential n-cells are a basis for Qn for all
n. This holds for augmented complexes as well as for non-augmented ones.
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We begin by defining homomorphisms On : Pn - Pn for all n as follows.
For an essential cell e let 9e = e (subscripts will usually be omitted) and
for a collapsible cell c let 9c = 0. For a redundant cell r we define Or to be
r - uac, where c and u are as in (3) of the definition of a collapsing scheme
(the definition would permit more than one suitable u; if this happens we just
choose one). Let p be a chain in which all the redundant cells have weight at
most k. Then Op is a chain in which all the redundant cells have weight less
than k. We then see that all the redundant cells in 9kp have weight 0, that
0k+1 p contains no redundant cells, and so 9k+2 p consists only of essential cells,
and O- p = 9k+2 p for m > k + 2. We can therefore define homomorphisms
0,b : Pn -* Pn by ¢p = 9k+2p when all the redundant cells in p have weight at
most k. Plainly 0 = 00.
We now show that qa = ¢499. Since 9e = e we have qae = 0,90e. Since
9c = 0, we need to show that qac = 0; this holds because ac = u-1(r - Or)
and 0 = ¢9. Finally, r - Or = uac, so a(r - Or) = 0, and far = 4a0r. It
follows that 019 = OaOm for all m, and hence qa = oao.
Let Qn be the free module with basis the essential n-cells. We can regard
On as a homomorphism from Pn to Qn whenever convenient. We define Sn :
Qn -> Qn_1 by S = ¢a. Then 88 = q5aq5a = q5aa, by the previous paragraph,
so SS = 0, and we have a chain complex Q. Also 60 = gaqS = qSa, so ¢ is
a chain-map from P to Q. Notice that S is easy to compute from a and the
collapsing scheme.
We next define homomorphisms an : Pn -- Pn+1. We let ae = 0 and ac = 0
for any essential cell e or collapsible cell c. For a redundant cell r, we define
ar using induction on the weight. Precisely, we have r = uac+Or, where the
redundant cells in Or have weight less than the weight of r, so we can define
ar by ar = uc + aOr. Since ap involves only collapsible cells for any chain p,
we have q5ap = 0 for all p.
Define On : Pn -* Pn by 0 = t-as-aa, where t is the identity. We show that
09 = ', from which it will follow, as before, that 00 = 0. First, 00e = Oe,
since 9e = e. Next, ac = 0, while ac = u-1(r - Or), so, by the definition of
a, aac = c. Hence be = 0 = '9c, since 9c = 0. Finally, aa(r - Or) = r - Or,
by definition, and a(r - Or) = a(uac) = 0, so zl'(r - Or) = 0. Also, plainly,
oa = ao.
Since we may regard Qn as a submodule of Fn, we may regard On as a
homomorphism from Qn to Pn. We then have 0 'e = iae = Jq5ae = 08e, so
that 0 is a chain-map from Q to P.
Since ae = 0, and dap = 0 for all p, we see that 00e = e. Also 00 = % _
c - as - aa. Hence 0 is a chain equivalence, as required.
Suppose that we have a strongly reduced complete rewriting system. We
should compare the resolutions obtained by the various methods. It is easy
to show that there is a natural bijection between the bases in Anick's reso-
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lution and Brown's. With more effort, using an inductive argument, we can
show that the boundaries and contracting homotopies in Anick's resolution
are the same as in Brown's (note that Brown's resolution has a contracting
homotopy obtained from its chain-equivalence with the bar resolution and the
natural contracting homotopy in the bar resolution). Because of the difficulty
of explicitly constructing the boundaries in Anick's resolution, it is usually
better to look at Brown's resolution when considering detailed questions of
homology. However, I find Anick's description of the basis elements to be eas-
ier to follow than Brown's, so it may be preferable to use Anick's approach if
the boundaries are not needed explicitly (for instance, in discussions of Euler
characteristic or cohomological dimension).
Squier's construction is slightly different (and it is also necessary to inter-
change left and right in order to make comparisons). Squier's P3 has as basis
all overlap ambiguities u, v, w. Anick's P3 is smaller. Its basis consists of those
overlap ambiguities u, v, w for which there is no overlap ambiguity u', v', w'
with u'v'w' an initial segment of uvw. Also, Squier uses a more general ex-
pression for 83. Squier's construction of 93 depends on a choice, for each
string w, of a sequence w = WO, wl,..., w such that wn is irreducible and,
for all i < n, either w; -+ wt+1 or wt+1 -+ w;. If this choice is made so that
w;+l always comes from wi by leftmost rewriting then this 83 is the same as
Anick's. It is interesting to note that the first hypothesis of Squier's Theorem
3.2 amounts to saying that his P3 is the same as Anick's, while his second
hypothesis ensures that Anick's P4 is zero; thus his conclusion is immediate.
In an unpublished paper, Squier has shown that a monoid which can be pre-
sented by a finite complete rewriting system satisfies an additional condition,
which he refers to as having finite derivation type, and he exhibits a finitely
presented FPS monoid with solvable word problem which is not of finite
derivation type. I do not properly understand this criterion, but it appears
to be of a homotopical nature, instead of being homological.
Squier's unpublished results, and Brown's work, give rise to a number of
interesting problems.
Are monoids with solvable word problem and of finite derivation type neces-
sarily presented by a finite complete rewriting system? (My guess is "No".)
Is a monoid of finite derivation type necessarily FPOO?
Do automatic groups [9] (which are known to be FPS with solvable word
problem) have presentations by finite complete rewriting systems? Are they
of finite derivation type?
There are finitely presented infinite simple groups (which of necessity have
solvable word problem) which are FPS [18, 27]. One of these is given explic-
itly in [6], in a form from which a presentation could easily be written down.
Does this group (more generally, this family of groups) have a presentation by
a finite complete rewriting sytem? Is it (are they) of finite derivation type?
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The group (xi (i E N); xjxi = xix,+l (all i, j with i < j)) is discussed in [7],
where a finite presentation is given, and the group is shown to be FPS. It is
easy to see that this group has solvable word problem. Can it be presented
by a finite complete rewriting system? Does it have finite derivation type?
Let F be a free group of rank n. According to Culler and Vogtmann [12], the
group Out(F) of outer automorphisms of F has a subgroup of finite index
whose cohomological dimension is 2n - 3. They prove the result by exhibiting
a complex on which the subgroup acts. Can it be proved by applying Brown's
result (or Anick's, equivalently) to some presentation?
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One Relator Products with High-Powered Relators
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Abstract. If G = (X1, ... , xn I r-) is a one-relator group for some large
integer m, then it is well known that G has many nice properties, and these
are often easier to prove than in the torsion-free case (where the relator is
not a proper power). To a large extent, this phenomenon also occurs for
a one-relator product G = (A * B)/N(rm) of arbitrary groups A, B (where
N(.) means normal closure). In this article we survey some recent results
about such groups, describe the geometric methods used to prove these re-
sults, and discuss what happens for lower values of m. Specifically, we give
counterexamples to a conjecture made in [36].

1. Introduction

Given a set X = {x1, x2, x3,. ..} and a word r on X U X-1 the group G given
by the presentation (x1i x2, X3.... I r) is said to be a one-relator group. An
extensive and successful theory of one-relator groups has been established,
based largely on the work of W. Magnus, and generalising the theory of free
groups (see [44], Chapter II). The theory of one-relator groups provides a basic
model and an extensive stock of techniques for further generalization of free
groups. With this aim in mind, one possibility is to consider presentations
with more than one relator. This idea has been been successfully pursued by
I.L. Anshel [1] for the case of two-relator groups (see also [40] for a particular
class of two-relator groups). Bogley [4] has also extended a number of one-
relator group theorems to certain groups with arbitrarily many relations.
Another possibility, that which we consider here, is to generalize from one-
relator groups to one-relator products of groups. Let A and B be groups, let
s be a word in the free product A * B and let N(s) be the normal closure of
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the subgroup generated by s in A * B. The group G = (A * B)/N(s) is then
called a one-relator product of A and B. In this case the word s is called the
relator and A and B the factors. At first sight it seems that there is little hope
of any satisfactory theory passing on from one-relator groups to one-relator
products. A fundamental Theorem of one-relator groups is the Freiheitssatz
of Magnus which does not in general hold in the case of one-relator products
(see §3). However by imposing restrictions, either on the factor groups A and
B or on the relator s progress can be achieved. A restriction on the factors
which seems to be just strong enough to make theorems go through is that A
and B be locally indicable (in other words, every nontrivial, finitely generated
subgroup admits a homomorphism onto the infinite cyclic group Cam). This
condition does lead to a successful theory (see [2, 7, 8, 16, 17, 20, 23, 33, 34,
35, 39, 54]). On the other hand the results presented in this article arise from
the imposition of a condition on the relator.

Let r be a word and s = rm, where m is a non-negative integer. Then s is
an m-th power of r. The root of s is the smallest non-trivial subword r of s
such that s is identical to a power of r. In the theory of one-relator groups
the condition that the relator is an m-th power, for a large integer m, leads
to geometric proofs that are both simpler and more illuminating than the
proofs available in the general case. In particular for large m suitable small-
cancellation hypotheses are satisfied, and the results of this theory can be
applied. This behaviour is to a large extent mirrored by one-relator products.

The purpose of this survey is to describe the results that can be achieved when
the relator in a one-relator product is an m-th power for various different
values of m. As a general rule the larger m is the more can be said and the
easier the proofs. In fact when m > 7 relatively simple geometric proofs can
be given for almost anything that is true of one-relator groups. For values of
m of 4 or less progress is much slower and in some cases the methods break
down altogether. Further restrictions that can be imposed to obtain results
at these low values of m are, for instance, that the relator contain no A or
B letters of order 2, or that the factors be locally indicable (see for example
Corollary 3.2, Theorem 3.10, Theorem 3.13 or Theorem 3.14).

Most of the results in this article are stated without proof, since they are
proved elsewhere in the literature. Where a result is new, we indicate this
and give at least an outline of the proof. The proofs given here and elsewhere
are largely geometric, relying heavily on the analysis of pictures over groups.
Pictures are the dual of van Kampen diagrams that arise in small cancellation
theory. A summary of the relevant facts about pictures can be found in §2.

Historically, the first result about one-relator products with a high powered
relator seems to be due to Gonzalez-Acufia and Short [29], who proved a
version of the Freiheitssatz for sixth and higher powers, and applied it to the
problem of which Dehn surgeries on knots in S3 can yield reducible manifolds.
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The latter problem has since been completely solved [6, 30], again using one-
relator products. See §5 (1) for details.
The paper is laid out as follows. Section 2 gives a brief introduction to
pictures over a one relator product, including the various ideas that appear in
our proofs. In Section 3 the main results are stated, with proofs or sketches
of proofs where the result is new. Section 4 discusses the breakdown at
low values of m of the basic theorem on pictures, namely "Conjecture F"
(which was proved for m > 4 in [36, 37] and conjectured for m > 2). Some
applications of the theory (including the Dehn surgery problem mentioned
above) are given in Section 5 and some open problems in Section 6.

2. Pictures

Pictures were introduced by Rourke [53] as a technique in group theory, and
have been applied by several authors in this way (see [52] and the references
cited there). They are essentially the dual of Dehn (van Kampen, Lyndon)
diagrams, which are familiar from small cancellation theory. See [9], [25] or
[52] for a full discussion of pictures.
Pictures were adapted to the context of one-relator products by Short [54],
who used them to prove the Freiheitssatz for locally indicable factors. They
have since been applied in this way by various authors [16, 17, 19, 29, 36, 37,
38, 40].
We shall give a brief description of the technique here, and indicate how they
are applied to various problems. A more detailed introduction can be found
in [36].

Let E be a compact surface, and G = (A * B)/N(rm) a one-relator product.
A picture r on E over G consists of:

(i) A disjoint union of (small) discs v1,... , v in int(E) (called the vertices
of r);

(ii) A properly embedded 1-submanifold of Eo = E N int(U vi) (whose
components are called the arcs of r, even when they are closed curves);

(iii) An orientation of BEo, and a labelling function, that associates to each
component of 8Eo N a label, which is an element of A U B.

This data is required to satisfy a number of properties.

(a) In any region A of r (that is, any component of E N (U vi U c)), either
all labels belong to A or all labels belong to B (we will refer to A as an
A-region or a B-region accordingly);

(b) Each arc separates an A-region from a B-region;
(c) The vertex label of any vertex vi (that is, the word consisting of the labels

of 9vi read in the direction of its orientation from some starting point)
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is identically equal to rm (in the free monoid on A U B) up to cyclic
permutation;

(d) Suppose i is an orientable region of 1, of genus g say, with k boundary
components. Each boundary component has a boundary label defined as
follows. If a1i . . . , at are the labels of that boundary component, in the
cyclic order of the orientation induced from some fixed orientation of A,
then the boundary label is

E] atEta1 ... ,

where et is +1 if the orientation of the segment of 8Eo labelled a,
agrees with that of the boundary component of A, and -1 otherwise. If
al.... ak are the boundary labels of A, then the equation

Xla1Xi 1 ... XkakXk 1 [Y1, Z1] ... [Yg, Zg] = 1

is solvable (for X,, Y , Z,) in A (if A is an A-region) or in B (if A is a
B-region).

There is a similar condition for nonorientable regions, where the commutators
are replaced by squares in the equation (see [17]). We omit the details.

In [36] it is shown how to associate pictures to a map from E to a certain space
with fundamental group G. For example, elements of the second homotopy
group of this space can be represented by spherical pictures, that is by pictures
on S2. Pictures on surfaces with boundary correspond to solutions of certain
quadratic equations in G, as follows. If r is a picture on a surface E over
a one-relator product G = (A * B)/N(rm), and ,3 is a boundary component
of E, then the label of 8 is just the product of the labels of the segments
contained in Q, read in the order of the orientation of a.

Proposition 2.1. Let E be a compact orientable surface of genus g with
k boundary components, and let G = (A * B)/N(rm) a one-relator product.
Suppose that W1, .... Wk are cyclically reduced words in A * B. Then there
exists a picture on E over G with boundary labels W1, .... Wk (where the
orientation of OE is induced from that of E) if and only if the equation

XlWIXi 1... XkWkXk 1 [Y1i Z1] ... [Ys, Zg] = 1

can be solved (for Xi, Y j, Z?) in G.

Indeed, given any path-connected space P with fundamental group G, the
equation in the Proposition is soluble if and only if there is a continuous map
from E to P whose restriction to 8E represents the k classes W1i ... , Wk E
ir1(P). The techniques of [36] associate a picture to any such map, for a
suitable choice of P, and vice versa. See [16] for a discussion. There is also
a version for nonorientable surfaces [17], but we omit the details. This result
is particularly useful where E = D2. There is a picture over G on D2 with
boundary label W if and only if W = 1 in G.
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Example Figure 1 shows a picture on D2 over the one-relator product G =
(A * B)/N((ab)2), where A = (a I a3 = 1) and B = (b), representing the fact
that (ab2)-3 = 1 in G.

Figure 1

We allow a number of operations on pictures as follows. First of all, a bridge
move can be performed along an embedded curve y in E meeting r only
in its endpoints, which must be interior points of arcs of r, under suitable
conditions.
The interior of y is necessarily contained in some region A of T. A bridge
move is essentially surgery on in a neighbourhood of y. Consider a thin
rectangular neighbourhood of y, whose short edges are contained in the arcs
of r. Simply replace these short edges by the two long edges of the rectangle.
We permit this move, and call it a bridge move, provided the result satisfies
the rules for a picture. See Figure 2.

Figure 2

A spherical picture containing precisely two vertices is called a dipole. We
also use this term to denote a two-vertex picture on D2 with no arcs meeting
0D2. We allow ourselves to insert or delete `floating' dipoles. That is, if
D C E is a disc such that r restricts to a dipole I'0 on D, we may replace To
by the empty picture on D, and vice versa.
We say that a pair of vertices of a picture r cancel along an arc a if they are
joined by a and if they can be made into a dipole using bridge moves on the
incident arcs other than a.
Suppose A is a disc-region of r, whose boundary consists of two arcs and
two segments of 8E0. Then we say that the two arcs in OA are parallel. The
two segments of 0E0 in 490 are labelled either by identical letters occurring
in r or by mutually inverse letters occurring in r, according to their relative
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orientations (see Figure 3). Moreover, in the former case, unless the two
vertices concerned cancel, the two letters concerned must occur at different
places in r.
We extend the notion of parallelism of arcs to an equivalence relation in the
obvious way. If we have an equivalence class containing t arcs, then there are
t -1 regions separating them, and the result is that we have two sequences of
letters representing identical subwords of r n (or of rm and r--). Moreover,
in the first case the two subwords occur in distinct places in rm, unless the
two vertices concerned cancel.
If r is reduced (that is, no pair of vertices cancel), then it turns out that
the upper bound for the size of a parallelism class of arcs is f = length(r)
[36]. Moreover, this upper bound can be attained only if r has the form (up
to cyclic permutation) xUyU-' for some word U and some letters x, y with
x2 # 1, y2 = 1. The subword UyU-' is then identical to its own inverse,
allowing a class of £ arcs (see Figure 4).

Figure 4

In view of the above, it turns out that some special forms of r are worth
special attention. We say that r is exceptional if it has the form

xUyU-'

for some word U and letters x, y (up to cyclic permutation). If p, q are the
orders of x, y respectively, we say that G is of type E(p, q, m). In the case
where U is empty, A = (x) and B = (y), G is then the triangle group of type
(p, q, m), which we denote Go(p, q, rn). If in addition the number



54 A.J. Duncan, J. Howie

1 1 1s=-+-+--1
P q m

is positive, then Go(p, q, m) is finite of order 2/s. For a finite triangle group
G = Go(p, q, m), there is a canonical spherical picture 1'(p, q, m) arising from

Figure 5

Figure 6

the action of G on S2. It has 2/sm vertices, 2/sp p-sided A-regions, and 2/sq
q-sided B-regions. (In particular, r(2,2, m) is a dipole.) Figures 5 and 6 show
1(2,3,2) and 1(3,3,2) respectively. Illustrations of T(2, 3, m), m = 3,4,5,
can be found in [36].
In general, if G is exceptional, of type E(p, q, m) and s > 0, then there is
a natural homomorphism from Go(p, q, m) to G, and 1'(p, q, m) induces a
spherical picture over G, which we also call 1'(p, q, m) by abuse of notation.
The final operation we allow on pictures is the insertion or deletion of a
floating 1'(p, q, m).
Note that it is possible for a word r, and so a one-relator product G, to be
exceptional in more than one way, possibly with different values of p, q, s.
For example if a, b denote letters of A, B respectively of orders 2 and 3 re-
spectively, then (abab2)m is both of type E(2, 2, m) and of type E(3, 3, m),
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while (ababab2)m is of type E(2, 3, m) in two distinct ways. This phenomenon
played a part in [37], where the notation E(2,3,4)+ was introduced to de-
note a relator that is exceptional of type E(2, 3, 4) in two different ways. In
general, we will say that r (or G) is uniquely exceptional if it can be regarded
as exceptional in only one way, and multiply exceptional otherwise. For mul-
tiply exceptional words, there will be more than one natural homomorphism
Go(p, q, m) -a G (possibly for different values of p, q), and more than one
natural spherical picture I'(p, q, m) over G. A great deal of care is required
when dealing with this situation, as will become apparent later.

Two pictures over G (on the same surface E) are said to be equivalent if each
can be obtained from the other by a sequence of allowable moves, namely
bridge moves and insertion/deletion of floating dipoles or I'(p, q, m)'s. Maps
on E represented by equivalent pictures differ up to homotopy only by an
element of the ZG-submodule of ire generated by the classes of dipoles and
r(p, q, m)'s. In particular, if E has a boundary, then the boundary labels of
equivalent pictures on E are equal (up to cyclic permutation).
We say that a picture over G on E is efficient if it has the least number of
vertices in its equivalence class. In particular, efficient pictures are always

reduced.

Given an efficient picture r on a surface E, we associate angles to the various
components of no N and use these to compute curvatures for each region
and vertex of T. There are various possible ways of associating angles, but
once that has been done, we define curvature as follows. If v is a vertex
and v(v) is the sum of the angles at v, we define the curvature of v to be
ac(v) = 21r - v(v). If a is a boundary component of E, we define the curvature
of ,Q to be ic(,Q) = -Q(#3), where o,(#) is the sum of the angles on /3. Finally,
if 0 is a region of I', and or(A) is the sum of the angles in A, we define the
curvature of 0 to be tc(s) = a(0) + 2aX(A) - na, where X(0) is the Euler
characteristic of 0, and n is the number of arcs in 00 that are not closed.
The sum of all these curvatures, over all vertices, boundary components and
regions of r, is then just 2iX(E). The general idea is to assign angles in such
a way that positive curvature for vertices, regions or boundary components is
rare (or better still, to get negative upper bounds). This will then limit the
pictures that can actually arise.
Before proceeding, it should perhaps be noted that the approach to curva-
ture described above is slightly different from those used in [16, 17, 36, 37,
38], particularly regarding boundary components of E. However, all these
approaches are essentially equivalent.

A region of r is a boundary region if it meets O. It is a simple boundary
region if it meets aE in a single segment. A vertex v of I' is a boundary vertex
if it is incident at a boundary region, and an interior vertex otherwise.
The following are the main restrictions on curvature for pictures.
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Theorem 2.2. [16], [17] Let G = (A * B)/N(rm) be a one-relator product
of two locally indicable groups A, B, and let r be an efficient picture over
G on some compact surface E. Assume that each component of E contains
part of T. Then there is a non-negative angle assignment such that every
vertex of r has curvature at most 21r(1- m), every boundary component of E
has curvature 0, and any positively curved region is either a simple boundary
region or a disc bounded by a closed arc of r.

If m > 2, this leads to a bound for the number of vertices in an efficient
picture on a given surface with given boundary labels, which in turn leads
to solutions for the genus problems for G [16], [17], see §3. With E = D2 it
shows that a nonempty efficient picture must have arcs meeting aD2, which
yields a proof of the Freiheitssatz for locally indicable factor groups.

Theorem 2.3. [29], [36], [37] Let G = (A * B)/N(rm) be a one-relator
product with m > 4, and let r be an efficient picture over G on a compact
surface E. Then there is a non-negative angle assignment such that all regions
have curvature zero, and unless G is of type E(2, 3, 4) or E(2, 3, 5) there are
no positively curved interior vertices.

This forces any positive curvature to be concentrated near the boundary of
E. In the cases E(2, 3, 4) and E(2, 3, 5) it is possible to have positively curved
interior vertices, but the possible configurations are very restricted. In [36],
[37] this is exploited to trade the positive curvature of such vertices off against
negative curvature of neighbouring vertices, which again forces any overall
positive curvature to be concentrated near aE.

Theorem 2.4. Let G = (A * B)/N(r3) be a one-relator product such that
no letter occurring in r has order 2 in A or B, and let T be an efficient
picture over G on a compact surface E. Then there is a non-negative angle
assignment for which all regions have curvature 0, and there are no interior
positively curved vertices.

In order to prove that some one-relator product G = (A * B)/N(rm) satisfies
the Freiheitssatz, for example, one would like to show that every nonempty
efficient picture over G on D2 has arcs meeting OD 2. In practice, it is often
easier to prove a stronger result, more suited to inductive arguments. The
following conjecture was made in [36] with this in mind.

Conjecture F. Let G = (A * B)/N(rm) be a one-relator product, where r
is cyclically reduced of length at least 2, and m > 2. Let r be an efficient
picture on D2 over G, such that at most 3 vertices of r are connected to aD2
by arcs. Then every vertex of r is connected to 0D2 by arcs.

The Freiheitssatz and various other results can be deduced for any one-relator
product that satisfies Conjecture F (see §3). Unfortunately, Conjecture F
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turns out to be false in general (§4), but it does hold in many special cases.

Theorem 2.5. Suppose G = (A * B)/N(rm) is a one-relator product with r
cyclically reduced of length at least 2. If at least one of the following conditions
hold then G satisfies Conjecture F.
(i) m > 4;

(ii) m = 3 and no letter occurring in r has order 2;
(iii) m = 2 and A, B are locally indicable.

Part (i) of this theorem was proved in [36] in the case m > 5, and in [37] for
m = 4. Part (ii) was proved in [18]. The curvature results above, Theorems
2.3 and 2.4 are crucial elements in the proofs. Here we sketch a proof of part
(iii), using Theorem 2.2.
Let r be an efficient picture over G on D2, with at most 3 vertices connected
by arcs to 9D2. We may clearly assume that F' has at least one vertex, and
that no arc of F' is either a closed curve or joins aD2 to 9D2. Indeed, an
easy induction allows us to assume that r is connected, that no arc joins
any vertex to itself, and that any two arcs joining the same two vertices are
parallel.
Applying Theorem 2.2, we have an angle assignment for which every vertex
has curvature at most -27r, aD2 has curvature 0, and the only positively
curved regions are simple boundary regions. In fact, adapting the method of
[16] slightly, this can be done in such a way that the angles are all either 0
or ir, and those on components of aD2 N are all 0. We amend this angle
assignment slightly as follows. Given any simple boundary region A, there
is by hypothesis at least one vertex v joined to aD2 by an arc in ao. We
change the angle of the segment of av in aA adjacent to that arc to 0. From
the argument in the proof of [16], Theorem 3.3, it is clear that this makes
Kc(A) nonpositive.

Repeating this for all simple boundary components, we transfer all the pos-
itive curvature to vertices connected to aD2. Moreover, since no angles are
negative, such vertices have curvature at most +27r. Since there are at most
three such vertices, and the total curvature is 21r, there are at most five ver-
tices in all.
If u is a vertex not connected to aD2, then it is known that at least 2m = 4
parallelism classes of arcs are incident at u ([16], Lemma 3.1). Since no arc
joins u to itself, and no two non-parallel arcs join u to the same neighbouring
vertex, we must have at least five vertices.
We are now reduced to the case where r has precisely three vertices v1, v2, v3
connected to aD2, and two vertices u1, u2 not connected to aD2. By the
above, each of v1i v2, v3 is connected to each of u1, u2, aD2, contradicting the
fact that the complete bipartite graph K3,3 is non-planar.
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3. Main results

In cases where Conjecture F holds, the way to generalise one-relator group
theory to one-relator products is open. In practice this means that m must
be sufficiently large, as is apparent in the light of the previous section.
As a first example consider the Freiheitssatz of Magnus [45]: if A and B are
free groups then A and B embed in (A * B)/N(s), whenever s is a non-trivial
cyclically reduced word of length at least 2. For one-relator products the
analogous property is the following.

The Freiheitssatz. Let G = (A * B)/N(r'n) where r is a cyclically reduced
non-trivial word of length at least 2 in A * B and is not a proper power. Then
the Freiheitssatz holds for G if the natural maps from A and B into G are
injections.

Theorem 3.1. [36], [37] Assume that Conjecture F holds for pictures over
G on the disk. Then the Freiheitssatz holds for G.

Proof. Suppose a E (A fl N(rm)). Choose CW-complexes X and Y with
rl(X) = A and rl(Y) = B and join X and Y with a 1-cell e1, to obtain
a space with fundamental group A * B. Let Z = X U Y U el U,m e2 be the
space obtained by attaching a 2-cell e2 along a path representing r'°. Let
f : Sl -> Z map S' homeomorphically onto a path representing a. Then
f can be extended to D2, since a is trivial in G, to give a picture r over G
on D2 with boundary label a. We may assume that r is efficient, so has no
arcs meeting the boundary 0D2, and so by Conjecture F has no vertices at
all. Hence a = lA.

From the results of Section 2 we obtain:

Corollary 3.2. [29], [36], [37], [18] Assume that either m > 4 or m > 3
and r contains no letters of order 2. Then the Freiheitssatz holds.

The conditions of the above Corollary cannot simply be removed as, for ex-
ample, A * B = N(ab) when A = C2, B = C3 and a and b are non-trivial
elements of A and B, respectively. However there are examples, with m = 2
or 3, for which the Freiheitssatz holds although Conjecture F fails (see Sec-
tion 4). On the other hand there are other versions of the Freiheitssatz under
conditions on A and B. The first concerns generalized triangle groups.

Theorem 3.3. Let G = (A * B)/N(rm) where each of A and B is a finite
cyclic group. Then the Freiheitssatz holds for G and r has order m in G.

This was proved by Boyer [6] and independently by Baumslag, Morgan and
Shalen [3]. The proofs work by studying representations of G into SO(3) and
PSL(2, C) respectively. In fact, a more general version is true [26].
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Theorem 3.4. Let G = (A*B)/N(r"`) where each of A and B is isomorphic
to a subgroup of PSL(2, C). Then the Freiheitssatz holds for G and r has
order m in G.

The proof gives a representation p : G -> PSL(2, C) such that the induced
representations on A and B are faithful, and p(r) has order m.
Finally, if A and B are locally indicable then the Freiheitssatz holds for ar-
bitrary m [8, 33, 54]. This last result gives a full generalization of Magnus'
Freiheitssatz: whether or not `locally indicable' can be replaced here by 'tor-
sion free' remains unknown.
Using a similar argument a generalization of a theorem of Weinbaum [57] can
be obtained.

Theorem 3.5. Let G = (A * B)/N(rm) where r is a cyclically reduced
non-trivial word of length at least 2 in A * B and is not a proper power. If
Conjecture F holds for G then no proper cyclic subword of r' represents the
identity in G. In particular r represents an element of order m in G.

A similar result also holds when m = 1 if A, B are locally indicable [34].
Furthermore, using the Freiheitssatz, the following can be proved [36], [37].
This generalizes Lyndon's Identity Theorem [43].

Theorem 3.6. Let G = (A * B)/N(rm) where r is a cyclically reduced
non-trivial word of length at least 2 in A * B which is non-exceptional and let
N denote N(rm). If Conjecture F holds for G then Nab is isomorphic as a
ZG-module to 76G/(1 - r)ZG.

Corollary 3.7. Under the hypotheses of the theorem, the restriction-induced
maps

Ht(G; -) -> Ht(A; -) x Ht(B; -) x Ht(C; -)
are natural isomorphisms of functors on ZG-modules fort > 3, and a natural
epimorphism for t = 2, where C = (r) is the cyclic subgroup of order m
generated by r. Dually, the maps

Ht(G; -) - Ht (A; -) ® Ht (B; -) ® Ht (C; -)

are natural isomorphisms for t > 3 and a natural monomorphism for t = 2.

Applying a theorem of Serre [42], we then have

Corollary 3.8. In the situation of the theorem, if K # {1} is a finite
subgroup of G, then K C gAg-1, K C gBg-1 or K C gCg-1 for some g E G.
Moreover, precisely one of these occurs, and the left coset gA (respectively
gB, gC) is uniquely determined by K.

In particular, A fl c= B n c =11}, and A fl B is torsion free. In fact, it
follows immediately from Conjecture F that A fl gBg-1 = {1} for all g E G.
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Similar results to the above also hold for m = 1 if A, B are locally indicable
[35], although it is no longer necessarily true that A fl B = {1}. In this case,
since A and B are torsion-free, every finite subgroup of G is cyclic, generated
by a conjugate of a power of r.
If r is exceptional (with s > 0), and Conjecture F holds for G, then it is
not too difficult to see that the natural map Go(p, q, m) -* G is injective
[36]. This holds, for example, if r = (xUyU-1)4, where x, y have orders 2
and 3 respectively. In particular we may identify Go with a finite subgroup
of G that properly contains C, as well as having nontrivial intersections with
conjugates of A and/or B. Hence the above corollary, and so also Theorem
3.6 and Corollary 3.7, fails in this case. The main reason for the difference is
the existence of the nontrivial spherical diagram r(p, q, m), so that we cannot
construct a K(G,1)-space for G in exactly the same way as we can in the
non-exceptional case. It follows that the cohomology calculation is different.
However, from the fact that all efficient spherical pictures are empty, we can
still deduce the following.

Theorem 3.9. Let G = (A* B)/N(r-) be a one-relator product with m > 4,
where r has a unique exceptional form E(p, q, m) for which s > 0. Then the
push-out of groups:

C' C' A*B

l 1

Go(p,q,m) - i G

induces a Mayer- Vietoris sequence of cohomology functors:

... -+ Ht(G; -) -+ Ht(A* B; -) x Ht(Go(p, q, m); -) -+ Ht(C, *C9, -) -> .. .

Note that multiply exceptional relator words are allowed here, but only if all
but one exceptional form has s < 0. Thus, for example, if a, b are letters
of orders 2, 3 respectively, then (abab2)4 is allowed; it has one exceptional
form E(2,2,4) (s = 17) and one form E(3,3,4) (s On the other hand
(ababab2)4 is not allowed, since it has two distinct exceptional forms of type
E(2, 3, 4). The theorem was (wrongly) stated in [36] without any restrictions
on multiply exceptional words, but the proof does not work in that generality.
The proof works by showing that the pushout diagram can be realized as the
fundamental groups of an adjunction-space diagram of aspherical spaces [36].
There is also a dual Mayer-Vietoris sequence of homology functors.
There are many other examples of standard results of one-relator group the-
ory that have natural generalizations to one-relator products. The next three
theorems are generalizations of the Spelling Theorems of Newman and Gure-
vich [31], [50].
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Theorem 3.10. Let r be a cyclically reduced word of length I > 2 in the free
product A * B. Assume that m > 4 and that rm is not of the form E(2, 3, 4)
or E(2, 3, 5). Let W be a non-empty, cyclically reduced word belonging to the
normal closure of rm. Then either

W is a cyclic permutation of r±m; or
W has two disjoint cyclic subwords U1, U2 such that each U; is identical
to a cyclic subword V of r±m, 1(U1) = 1(U2) > (m - 1)1 - 1 and W has
a cyclic permutation x1U1x2U2 for some elements x1, x2 of the pregroup
A U B; or
W has k disjoint cyclic subwords U1,.. . , Uk for some k E {3,4,5,6}
such that each U, is identical to a cyclic subword U of r±m, and V has
length at least (m - 2)1- 1 for i _< 6 - k, and at least (m - 3)1- 1 for
i>6-k.

Theorem 3.11. Let r be a cyclically reduced word of length 1 > 2 in the free
product A * B, such that no letter of r has order 2, and let m > 3. Let W be
a non-empty, cyclically reduced word belonging to the normal closure of rm.
Then either
(1) W is a cyclic permutation of r}m; or
(2) W has two disjoint cyclic subwords U1i U2 such that each U1 is identical

to a cyclic subword U of r±m, l(U1) = l(U2) > (m - 1)l and W has a
cyclic permutation of the form x1U1x2U2 for some elements x1, x2 of the
pregroup A U B; or

(3) W has three disjoint cyclic subwords U1, U2, U3 such that each U1 is iden-
tical to a cyclic subword U of r±m of length at least (m - 2)1.

Theorem 3.12. Let r be a cyclically reduced word of length 1 > 2 in the
free product A * B. Assume that A and B are locally indicable. Let W be
a non-empty, cyclically reduced word belonging to the normal closure of rm.
Then either
(1) W is a cyclic permutation of r±m; or
(2) W has two disjoint cyclic subwords U1, U2 such that each U, is identical

to a cyclic subword [; of r±m of length at least (m - 1)l + 1.

Theorems 3.10 and 3.11 were proved in [19], using pictures and curvature
arguments as described in §2. Theorem 3.12 was proved in [39], using the
dual of pictures (diagrams), and the strong properties of locally indicable
groups.
Another classical result from one-relator theory is the theorem of Cohen and
Lyndon [11], that the normal closure of the relator (in the underlying free
group) is freely generated by a suitable collection of conjugates of the relator.
This also generalizes to one-relator products under various conditions.

Theorem 3.13 Assume that one of the following conditions hold:
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(i) m > 6;
(ii) m > 4 and no letter of r has order 2;

(iii) A and B are locally indicable.
Then there is a set U of double coset representatives of N(rm)\(A*B)/C such
that N(rm) is freely generated by {urmu-1 I u E U}. Here C is the cyclic
group generated by r, except in the case E(2,2, m), r - xWyW-1, x2 = y2 = 1,
in which case it is the dihedral group generated by x and WyW-1.

See [7, 19, 23]. Another example is the following, which generalizes a theorem
of Magnus [46].

Theorem 3.14 Suppose rl and r2 are cyclically reduced non-trivial words of
length at least 2 in A * B, ml and m2 are positive integers, and that for each
i at least one of the following conditions holds:

(i) mi > 4 and r! n' is not of the form E(2, 3, 4) or E(2,3,5);
(ii) m, > 3 and no letter of r; has order 2;

(iii) A and B are locally indicable.
If N(rl ') = N(r2 2) then ml = m2 and r2 is a cyclic permutation of ri

See [7, 19, 20].
We end this section with a discussion of decision problems for one-relator
products. The classic decision problem is the word problem: given a word
in the generators of some group, can one decide algorithmically whether or
not that word represents the identity element? Magnus [47] proved that the
word problem for one-relator groups is soluble. Indeed, a somewhat stronger
result holds: if G is a one-relator group, and F the subgroup generated by
some subset of the generators of G, then the generalized word problem for F
in G is soluble. In other words, given any word W in the generators of G,
one can decide whether or not W represents an element of F, and if so one
can find a word in the generators of F that represents the same element as
W.
Under suitable conditions, we can generalize the above result to one-relator
products of groups.

Theorem 3.15 Suppose that G = (A * B)/N(rm) is a one-relator product,
where A and B are groups given by recursive presentations with soluble word
problem, r is a cyclically reduced word in A * B of length at least 2, given
explicitly in terms of the generators of A and B, and that one of the following
conditions holds:
(i) m > 4;

(ii) m = 3 and no letter occurring in r has order 2;
(iii) m = 2 and A, B are locally indicable;
(iv) A, B are effectively locally indicable.
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Then the generalized word problem for A (respectively, B) in G is soluble.

Parts (i) and (ii) were proved in [18], [38] (using an isoperimetric inequality de-
rived from the curvature results of §2), and parts (iii) and (iv) by Mazurovskii
[49]. The term effectively locally indicable in (iv) means that there exists an
algorithm to decide, given a finite set of words in the generators, whether or
not the subgroup H of G they generate is trivial, and if not to find a homo-
morphism from H to C. Part (iii) was also proved in [39] (using the spelling
theorem), and is a special case of Theorem 3.16 below.

The second commonly studied decision problem is the conjugacy problem: to
decide whether two words in the generators represent conjugate elements of
a group. Another, less familiar one is the commutator recognition problem:
decide whether a given word represents a commutator in the group. These are
subsumed in a class of problems we call the genus problems. The genus prob-
lem GP(g, n) is the following algorithmic problem: given n words W1,.. . , W
in the generators of a group, decide whether or not the equation

X1W1Xi' ... [Y1i Z1] . . . [Ys, Zs] = 1

can be solved (for X,, Y, Z1) in the group, and if so, find an explicit solution
in terms of the generators.
Thus GP(0,1) is the word problem, GP(0, 2) is the conjugacy problem, and
GP(1,1) is the commutator recognition problem. The problems GP(0, n)
were called the dependence problems by Pride [51]. We shall say that the
genus problem is soluble for a given group if GP(g, n) is soluble for all g, n.
The genus problem is known to be soluble for certain small cancellation groups
[51] and for negatively curved (or hyperbolic) groups [55]. It is also soluble for
a free product of groups if it is soluble in each of the free factors [12, 14, 28,
58]. The conjugacy problem for one-relator groups with torsion was solved
by Newman [50], and for general one-relator groups by Juhasz (unpublished).
The situation for one-relator products is as follows.

Theorem 3.16 Let G = (A * B)/N(rm) be a one-relator product, where A, B
are groups given by recursive presentations for which GP(g', n') is soluble for
all pairs of integers (g', n') such that 0 _< g' < g and 1 < n' < n + 2(g - g'),
and r is a cyclically reduced word of length at least 2, given explicitly in terms
of the generators of A, B. Suppose that one of the following conditions hold:

(i) m > 5 and G is not of type E(2, 3, 5) or (2,3,6);
(ii) m > 4 and no letter occurring in r has order 2;

(iii) m > 2 and A, B are locally indicable.
Then GP(g, n) is soluble for G.

Corollary 3.17. If G = (A * B)/N(rm) where A and B are groups having
presentations with soluble genus problem, and one of the conditions (i), (ii),
(iii) of the theorem hold, then G has soluble genus problem.
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Corollary 3.18. The genus problem is soluble for one-relator groups with
torsion.

Part (iii) of the theorem was proved in [16]. The proofs of parts (i) and (ii)
are similar, and we sketch the general argument here.
Given words W1,.. . , W, in the generators of A and B, we need to decide
whether or not there is a picture r over G, on a compact orientable surface
E of genus g with n boundary components, such that the boundary labels of
E (with respect to the orientation of aE induced from some orientation of E)
are W1, . . . , W,, (see Proposition 2.1).
Such a picture r may clearly be taken to be efficient, and contain no arcs
which are closed curves bounding discs in E, and no arcs going from OE to
aE that together with subarcs of 8E bound discs in E. Under any one of
the hypotheses (i)-(iii) of the theorem, we may assign angles in such a way
that all boundary components have curvature 0, all vertices have curvature at
most -e, and the only positively curved regions are simple boundary regions
of curvature at most -by, for some real constants e, q > 0.
The number of simple boundary regions is bounded by the number of points
of 8E meeting arcs of r, which is the sum of the free product lengths of the
W. This bound, together with the formula 27rX(E) for the total curvature
of r, yields a bound (an isoperimetric inequality) for the number of vertices
in T. Thus there are only a finite number of possible candidates for r (up
to ambient isotopy in E). In order to test one of these candidates for the
conditions for a picture, we apply the solutions to GP(g', n') in A, B to the
regions (which are subsurfaces of E of genus at most g and Euler characteristic
at least X(E)).
The finitely many candidates for r can be effectively listed, and each can
be effectively tested to decide whether it is a picture. Hence the problem
GP(g, n) is algorithmically soluble for G.

There is a nonorientable version of the genus problem [17], involving pictures
on nonorientable surfaces. There are also analogous results for these prob-
lems, but there are some extra technicalities involved, arising from loss of
orientability. We omit the details for ease of exposition.

4. Counterexamples to conjecture F

In general, Conjecture F fails in the cases m = 2 and m = 3. This can be
seen quite easily from Figures 7 and 8, where r has the form xUyU-' with
x of order 2 and y of order greater than 3. Two possible ways around this
problem suggest themselves. Firstly, is Conjecture F stronger than is needed
to obtain the main results of §3? This may well be true. However, we shall see
below that some of the main results also fail for m = 2 and m = 3. A second



High powered relations 65

approach would be to try to find out exactly for which cases Conjecture F
fails, or at least to try to find special cases where Conjecture F remains true,
with m = 2 or m = 3. Theorem 2.5 (ii) is one result of this type.

Figure 7.

Figure 8.

Suppose that r has the form E(p, q, m) with m = 2 or m = 3, and s =
1/m + 1/p + 1/q > 1. There is then a homomorphism to G from the finite
group G(p, q, m) = (x, y I xp = y4 = (xy)m = 1), which in all known cases is
injective. In some cases of course, G = G(p, q, m), so G is also a finite group.
However, there are some other known examples of generalized triangle groups
(with A = Cp and B C9) such that G is finite of order strictly greater than
G(p, q, m).
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Theorem 4.1. Let G = (A * B)/N(rm) be a one-relator product of two
groups A, B, such that G is finite. Assume that each of A and B embeds
into G via the natural map, that r has order m in G, and that there is no
nonempty efficient spherical picture over G. Then G is exceptional (of type
E(p, q, m), say). If in addition r1b has a unique exceptional form with the
property that s = 1/p + 1/q + 1/m - 1 > 0, then

1 1 1 _1 1 1 _1 1 1 1

IAI+IBI IGI p+q IGoI 2 2m+2p+2q'

where Go is the finite group G(p, q, m) = (x, y I x' = y9 = (xy)m = 1).

Proof. Assume first that G is non-exceptional. By hypothesis the Frei-
heitssatz holds for G, r has order m in G, and there are no non-empty efficient
spherical pictures over G. This is sufficient to prove the Identity Theorem for
G, and hence obtain natural isomorphisms

Ht(G; -) --> H(A; -) x Ht(B; -) x Ht(Cm; -)

of functors on ZG-modules for each t > 3, where Cm is the cyclic subgroup
generated by r (see §3).
It follows from Corollary 3.8 that any finite subgroup of G, in particular G
itself, is contained in a unique conjugate of precisely one of A, B, Cm. But if
G C A, for example, then B = B fl G C B fl A = { 1}, a contradiction. Hence
G is exceptional, of type E(p, q, m), say. Thus r - xUyU-1 for some word
U, where x, y are letters of order p, q respectively.
Suppose now that G is uniquely exceptional. Construct spaces W, X, Y, Z as
follows. Let W be a K(Cp * Cq,1)-space and Y a K(A * B, 1)-space. Obtain
X from W by attaching a 2-cell along a path in the class (a/3)m, where a, /3
are generators of Cp, Cq respectively. Let 0 : W -> Y be a map sending a, /3
to x, UyU-1 respectively. Then Z = Y U0 X is obtained from Y by attaching
a 2-cell along a path in the class rm.
Now7r1(X)=Go=(a,/3lap=/3q=(a/3)-= 1) and7rl(Z)=G. It was
shown in [36], proof of Theorem E, that ¢ induces an injection from Go to G,
so we may regard Go as a subgroup of G. Let n = IGI, no = IGoI, a = JAI,
and b = IBI.
Let Z, X denote the universal covers of Z, X respectively, and Y, W the sub-
complexes covering Y, W. Now W is a K(Fo,1)-space, where Fo = Ker(Cp *
Cq -+ Go) is a free group (by the Kurog subgroup theorem) of rank po =
no(1 - 1/p - 1/q) + 1 (by an Euler characteristic calculation). Similarly
Y=K(F,1), where F is free of rank p=n(1-1/a-1/b)+ 1.
Let C, V be the long exact homology sequences of the pairs (X, W) and (Z, k)
respectively. Then 0 induces a chain map 0.: C ®zG0 ZG - D. Moreover
0.: H2(X,W) ®ZG H2(Z,Y) is an isomorphism, since each term is a free
module of rank one, generated by the class of the 2-cell in X\W = Z\Y.
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Since H2(W) = H1(X) = H2(1') = H1(2) = 0, we have a commutative
diagram with exact rows:

0 --> H2(X)®ZG-) H2(X,W)®ZG- H1(W)®ZG-> 0

0 + H2(Z) ) H2(Z,Y) ) H1(Y) ) 0

in which the middle vertical map is an isomorphism. Hence the left hand
vertical map is injective. Moreover, the fact that r is uniquely exceptional
means that there is essentially only one spherical diagram of type r(-, -, m)
over G (up to spherical symmetries), and so to say that there are no nonempty
efficient spherical pictures over G is the same as saying that the left hand
vertical map is also surjective. But an easy computation shows that the Z-
ranks of H2(X) ®7GG and H2(Z) are n(1/p+l/q-1/no) and n(1/a+l/b) -1
respectively. The result follows.

Corollary 4.2. The following generalized triangle presentations each admit
nonempty efficient spherical pictures:
(i) (a, b I a2 = b3 = ((ab)4(ab2)2)2 = 1);

(ii) (a, b I a3 = b3 = (abab2)2 = 1).

Proof. The first of these is the group 12.54 of Conder's list [13]. The third
relator r2 is uniquely exceptional: it is a cyclic permutation of (bUbU-1)2,
where U = ababa. The uniqueness stems from the fact that b occurs four
times in r and its inverse b2 occurs only twice. It is thus of type (3, 3, 2). But
it has order 2880, so the equation of the theorem fails.
The second group is again uniquely of type E(3, 3, 2), and a coset enumeration
shows it to have order 180, so again the equation does not hold.
In both examples the factor groups A = (a) and B = (b) are readily seen to
embed in G, and the root r of the third relator has order 2 in G. It follows
immediately from the Theorem that in each case there are nonempty efficient
spherical pictures.

Remarks. (1) We can now summarise the status of Conjecture F. Our results
show that the conjecture holds for m > 4, and also for m = 3 in the case
where r contains no letter of order 2. On the other hand, the conjecture
is false in general for m = 2 and for rn = 3, as shown by Figures 7 and 8
respectively. One could propose a weaker form of the conjecture, saying for
example that in any efficient picture on D2 with at least one interior vertex,
at least m vertices are connected to D2. Such a statement would still suffice
to prove the Freiheitssatz, and to extend some of the other results of §3. The
above corollary shows that no such weaker conjecture can hold when m = 2,
but what of the case m = 3?
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(2) The proof above is non-constructive, in the sense that it shows the ex-
istence of efficient spherical pictures via an algebraic calculation, but does
not actually produce such a picture. We will rectify this by giving a specific
example below.

Example. Consider case (ii) of the Corollary above. In this case G is a
direct product A5 x C3 (we are grateful to Derek Holt and Rick Thomas for
comments about this), while Go = A4. The kernel of the natural map from G
to C3 is the normal closure of a. It contains Go, and in particular it contains
r. Let A denote the group ring Z6C3, and let 0 : ZG -* A be the natural
map. Given any spherical picture r, we can choose basepoints p for each
vertex v of r, such that the label of v read from p is precisely rm. Among
the p,,, pick a basepoint p for the whole picture.
The evaluation of r is defined to be the element e(F) :_ >v
e = ±1 is the orientation of v and .1 is the label of any transverse path in
r from p to p,,. See Pride [52] for a full discussion. The evaluation does not
depend on the choice of spray (collection of transverse paths), but is sensitive
to the initial choice of basepoints. Change of basepoint at a single vertex
adds a multiple of 1 - r to the evaluation, while change of overall basepoint
(amongst the multiplies the evaluation by an element of G. Bridge moves
do not alter the evaluation, nor does elimination of cancelling pairs of vertices
(provided their basepoints are chosen in a compatible way).
Finally, the spherical picture F(3,3,2) (Figure 6) satisfies Oe(r(3, 3, 2)) _
0. It follows that z'e(F) = 0 for any picture r that is equivalent to the
empty picture via bridge moves, insertion and deletion of cancelling pairs,
and insertion and deletion of floating F(3, 3, 2)'s.
Now consider the picture r in Figure 9. It is easy to calculate that be(F) _
3(1 + b)bt for some t E {0, 1, 21 depending on the choice of base-point. Hence
F is not equivalent to an empty picture. To see that r is efficient, one notes
first that, since allowable moves change numbers of vertices by multiples of 2,
any smaller picture equivalent to I' would have an even number of vertices.
Secondly, since e(F) has augmentation 6, any picture equivalent to r has at
least 6 vertices. Thirdly, by the Euler formula, and the fact that any vertex
in a spherical picture over G has at least 4 neighbours, we can see that a
6-vertex or 8-vertex spherical picture over G would have to contain at least
one pair of adjacent vertices, each with exactly 4 neighbours. It is not hard
to deduce that such a picture must contain (up to bridge moves) a 4-vertex
subpicture of r(3,3,2), contrary to the hypothesis of efficiency. This leaves
us to consider 10-vertex spherical pictures. A slightly longer argument along
similar lines (the details of which we omit) shows that no 10-vertex spherical
picture can be equivalent to F.

Final remark. All the counterexamples to Conjecture F that we know about
satisfy the Freiheitssatz. The evidence remains strong that the Freiheitssatz
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positively oriented vertex

negatively oriented vertex

Figure 9.

holds for any one-relator product in which the relator is a proper power. A
proof of this assertion, however, does not yet appear to be in sight.
We have noted in §3 above that in some cases where the relator is exceptional
Theorem 3.6 and its corollaries may fail. This is true even in cases where
Conjecture F holds, although some analogous statement can then usually be
proved, for example Theorem 3.9.
Similarly, we know of no counterexamples to the Cohen Lyndon Theorem
(3.13), the Magnus Theorem (3.14), or the solubility of the generalized word
and genus problems (3.15, 3.16), for any one-relator product with proper
power relator rm. However, our methods break down when m becomes very
small. For example, the Spelling Theorem (3.10) gives insufficient information
to prove Theorems 3.13 and 3.14 in the cases m = 4 and m = 5, and no
information whatsoever in the case m = 2.

5. Applications

In this section we indicate some applications of the results mentioned in
earlier sections, and also some other applications of the method of pictures.
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For other applications of pictures, see Pride's survey article [52], and some of
the references cited there.

(1) Let k be a knot in S3, and let M be the manifold formed from S3 by
doing a/b-surgery along k, where a, b are integers with no common prime
factor (possibly one of a, b is zero). If M is not prime (that is, M = M1#, M2
is a nontrivial connected sum), then 1r1 (M) is a nontrivial free product A * B,
and the trivial group ir,(S3) can be shown to have the one-relator product
(A * B)/N(rb) as a homomorphic image [29], where r E irl(M) is the element
traced out by the knot. It follows from the results of [29] that b < 5, and
from the Freiheitssatz of §3 that b < 3. Moreover, b < 2 unless one of
A = irl(M,),B = irl(M2) contains an element of order 2 (from which it
follows that some connected summand of M has finite fundamental group).
In fact, more than this is true. Boyer [6] and Gordon and Luecke [30] showed
that b < 1 in this situation. From a theorem in [15] we can have b > 1 only if
both Ml and M2 are lens spaces (so A, B are finite cyclic groups, and Theorem
3.3 applies). The assertion b < 1 is best possible, as certain connected sums
of lens spaces can arise from integer surgery on knots [30].

(2) Let G be a group, and let w = w(x) E G * (x). Makar-Limanov and
Makar-Limanov [48] show that the equation w(x)m = 1 in x can be solved
over G (that is, the natural map G -4 (G * (x))/N(w(x)m) is injective) for
some positive integer m. Egorov [24] and Taylor-Russell [56] have shown that
w(x)m = 1 is solvable over G for all m > 4 provided either G contains no
2- or 3-torsion [24], or x appears in w with nonzero exponent sum [56]. Our
results show that in fact wm = 1 can be solved over G (i) for all m > 4; (ii)
for all m > 3 if w has no letter of order 2.

(3) Howie and Thomas [40] (see also [41]) studied the two-relator products

(2, 3, p; q) = (a, b I a2 = b3 = (ab)' = [a, by = 1)

of C2 and C3, in connection with a conjecture of Coxeter, using the methods
described in this article, namely pictures, curvature and cohomology. They
showed that if p > 7 and q > 4, then with only finitely many exceptions the
group (2, 3, p; q) is infinite. The results in the case p = 7 were also obtained
by Holt and Plesken [32] by other methods. The group (2, 3, 7; 11) was shown
to be infinite by Edjvet [21], again using pictures. It was not covered by the
results of [32] and [40]. It is now known which of these groups are infinite,
except for a single case which remains open - namely (2, 3, 13; 4). The larger
class of groups (1, m, n; p), and other related examples, are considered by
Chaltin [10].

(4) Finally, we refer the reader to [5, 22, 27] for further applications of pictures
to the solution of equations over groups, and related questions.
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6. Further problems

We finish by mentioning some open problems suggested by the work described
in this article.

(1) Does the Freiheitssatz hold for any one-relator product with relator a
proper power? In other words, if r E A * B is not conjugate to an element of
A and m _> 2, is the natural map A -+ (A * B)/N(rm) injective? We know
that the answer is yes in any situation where conjecture F holds, but the
Freiheitssatz also holds in all known examples, even in the counterexamples
to conjecture F (see §4).

(2) Is conjecture F true when m = 2 and r has no letters of order 2 or 3? More
generally, is conjecture F true whenever the relator rm is not exceptional? All
the counterexamples given in §4 have exceptional relations containing letters
of orders 2 or 3.

(3) Is the weaker from of Conjecture F proposed in Remark 1, §4 true? In
other words, given an efficient picture over (A* B)/N(r3) on D2 with at most
two vertices connected to OD' by arcs, is it always the case that all vertices
are connected to 0D2 by arcs?

(4) Is there an analogue of Theorem 3.9 for multiply exceptional relator
words? We can show that any given word has at most 3 exceptional forms,
and we can completely classify all doubly and triply exceptional words.

(5) Can the work of Anshel [1] and Bogley [4] on 2-relator groups and n-relator
groups be generalised to 2-relator products (respectively n-relator products)
in some sensible way?
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An Inaccessible Group
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1. Introduction

Stallings [6] showed that a group G has more than one end if and only if
G zt A *F B, where F is finite, A # F # B, or G is an HNN-extension with
finite edge group F.
A finitely generated group G is said to be accessible if it is the fundamental
group of a graph of groups in which all edge groups are finite and every vertex
group has at most one end. We say that G is inaccessible if it is not accessible.

Let d(G) denote the minimal number of generators of the finitely generated
group G. It follows from Grushko's Theorem that d(G* H) = d(G) + d(H). It
follows that G is a free product of indecomposable groups, i.e. groups which
cannot be written as a non-trivial free product. The problem of accessibil-
ity is whether we can replace the free product with free product with finite
amalgamation in the last statement. (The number of HNN-decompositions
is bounded by d(G).) However, there is no analogue of Grushko's Theorem.
In fact, if G is accessible then any process of sucessively decomposing G, and
the factors that arise in the process, terminates after a finite number of steps.
See [2] for a proof of this and related results.
Linnell [5] proved that if G is finitely generated then, for any reduced de-
composition of G as a graph of groups X in which all edge groups are finite,
there is a bound B such that EeEE 1/IGeI < B, where E is the edge set of
X. Thus for any k > 0, there are at most kB edges e such that IGeI < k. In
[3] I showed that G is accessible if G is almost finitely presented. Groves and
Swarup [4] have extended this result to a somewhat larger class of groups.
This paper contains the construction of a finitely generated inaccessible group.
C.T.C. Wall [8] conjectured that all finitely generated groups are accessible.
On the other hand, Bestvina and Feighn [1] have given an example of a finitely
generated group which does not satisfy a generalized accessibility condition
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in which decompositions over torus subgroups are allowed. It was by thinking
about their construction that I thought of the example presented here.
Let X be a connected locally finite graph. Thomassen and Woess [7] have
defined X to be accessible if for some positive integer n any pair of ends of X
can be separated by removing at most n edges. They show, by using results
from [2] Chapter 2, that a finitely generated group G is accessible as a group
if and only if its Cayley graph (with respect to a finite generating set) is
accessible as a graph. They investigate alternative definitions for a graph to
be accessible.

I am very grateful to Warren Dicks, Peter Kropholler and Martin Roller for
providing short proofs that the group J is inaccessible to replace my laboured
argument.

2. Constructing the example
Suppose we have a lattice of groups as shown.

In the diagram lines represent proper inclusions. We also require that Gi+1
is generated by Ki and H;+1.
We show how to associate an inaccessible group with such a group lattice,
when Ki (and hence Hi) is finite for all i, and G1 is finitely generated. In the
next section we show that such a lattice of groups exists.
Let P be the fundamental group of the graph of groups

G1 G2 G3 G4

H1 H2 H3

In P, we have H1 < H2 < ... < H,,, := UIEN Hi. Since H,, is countable it can
be embedded in a finitely generated group H. Let J be the free product with
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amalgamation P *H H. Now J is generated by G, and H. For suppose L is
the subgroup generated by G, and H. It suffices to show that Gi < L for all
i E N. But if G; < L, then K; < L and H,+1 < L and so G;+1 < L. It follows
by induction that Gi < L for all i E N. Hence J is finitely generated.
Let Pn be the fundamental group of the graph of groups

G1 G2 G3 Gn_, G.

...............

K, K2 K._1

and let Qn be the fundamental group of the graph of groups

Gn+1

0-
Gn+2 Gn+3

.........

Kn+1 Kn+2

Thus P = Pn *K, Q11- Since H4, < Qn,J decomposes as

J = Pn * (Q. * H),K H.

and so if Jn = Qn *H,,, H, J decomposes as the fundamental group of the
graph of groups

G, G2 G3 Gn_1 Gn Jn

............... _

K, K2 Kn_1 Ifn

It follows immediately that J is inaccessible.

3. Constructing the lattice
In this section we construct a lattice of groups as specified in the previous
section. Let H be the subgroup of Symm(Z) generated by the transposition
t = (0, 1) and the shift map s, where s(i) = i + 1. Put t; = sits-i =
(i, i + 1). Let Hi = (t_i, t_;+1, ... , to) t,, ... , ti-1). Thus H, is isomorphic to
the symmetric group S2i+1. Let V be the group of all maps Z -+ Z2 with finite
support, under the usual addition. Then H acts on V by vh(n) = v(h(n))
for all v E V, h E H and n E Z. Let V be the subgroup of V consisting of all
maps with support [-i, i] = {-i, -i + 1, ... , 0,1, ... , i}. Let G; = Vi >4 Hi.
Let zi E V, with zi(n) = 1 for n E [-i, i], then zi is central in G. Let
Ki = (zi, Hi) and note that Ki = 7Z2 x Hi. For i = 1, 2.... let Gi be an
isomorphic copy of G; and identify Ki with its image in Gi. We can then
assume that Ki = Gi fl Gi+1. It is left to the reader to check that the lattice
of groups is as required.
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Isoperimetric and Isodiametric Functions of
Finite Presentations

Steve M. Gersten

Mathematics Department, University of Utah, Salt Lake City, UT 84112, USA.

1. Introduction and definitions
Isoperimetric functions are classical in differential geometry, but their use
in group theory derives from Gromov's seminal article [Gr] and his char-
acterization of word hyperbolic groups by a linear isoperimetric inequality.
Isodiametric functions were introduced in our article [G1] in an attempt to
provide a group theoretic framework for a result of Casson's (see Theorem 3.6
below). It turned out subsequently that the notion had been considered ear-
lier under a different name [FHL]. We have learned since that the differential
geometers also have their isodiametric functions and they mean something
different by them. However the analogy is too suggestive to abandon this
terminology and we shall retain it here. Up to an appropriate equivalence
relation (Proposition 1.1 below), isoperimetric and isodiametric functions are
quasiisometry invariants of finitely presented groups. Hence these functions
are examples of geometric properties, in the terminology of [Gh].
If P = (x1, x2i ... , xp I R1, R2, ... Rq) is a finite presentation, we shall denote
by G = G(P) the associated group; here G = F/N, where F is the free group
freely generated by the generators x1, ... , xp and N is the normal closure of
the relators. If w is an element of F (which we may identify with a reduced
word in the free basis), we write £(w) for the length of the word w and w for
the element of G represented by w. We shall use freely the terminology of
van Kampen diagrams [LS, p. 235ff] in the sequel.
We write Areap(w) for the minimum number of faces (i.e. 2-cells) in a van
Kampen diagram with boundary label w. Equivalently, Areap (w) is the min-
imum number of relators or inverses of relators occurring in all expressions
of w as a product (in F) of their conjugates. The function f : N --+ N is an

This research was partially supported by the NSF. In addition it is a pleasure to thank the
University of Sussex for their kind hospitality.
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isoperimetric function for P if, for all n and all words w with 1(w) < n and
w = 1, we have Areap(w) _< f (n). The minimum such isoperimetric function
is called the Dehn function of P.
If D is a van Kampen diagram with boundary label w, we choose the base
point vo in the boundary of D corresponding to where one starts reading the
boundary label w and one defines

=vmDx dp(l)(vo,v).
E

Here dD(i) denotes the word metric for the 1-skeleton of D, so that every edge
has length 1. The function f : N -f N is called an isodiametric function for
P if, for all n and all reduced words w with 1(w) < n and w = 1, there exists
a based van Kampen diagram (D, vo) for w with (D) f (n). A more
algebraic way of formulating this is as follows. Let M denote the maximum
length of a relator of P. Let f be an isodiametric function for P. If w = 1,
then one can write

;uiw= R;; ,

where R;; is a relator, ei = ±1, ui E F and 1(ui) _< f(1(w)) + M. Here we
write ab = bab-1 for elements a and b in a group.
A word of caution is necessary here. A diagram of minimal area is always
reduced, in the sense of [LS]. However this will not be the case in general for
a diagram of minimal diameter. This complicates considerably the problem
of proving that a diagram is diametrically minimal. Consequently we do not
introduce a diametric analog of the Dehn function.
Next we discuss the question of change of presentation.

Proposition 1.1. [Al], [Sh] Let P and P be finite presentations for iso-
morphic groups. If f is an isoperimetric function (resp. isodiametric func-
tion) for P, then there exist positive constants A, B, C, D, and E such that
n H Af (Bn + C) + Dn + E is an isoperimetric (resp. isodiametric) function
for P.
In fact, isoperimetric (resp. isodiametric) functions transform in the same way
for quasiisometric presentations, so, up to the obvious equivalence relation,
these are quasiisometry invariants (for the notion of quasiisometry, see [Gh]).
In particular it makes sense to speak of a finitely presented group possessing
a linear, quadratic, polynomial, exponential, etc., isoperimetric (resp. isodi-
ametric) function, or more loosely, to speak of the group satisfying the the
appropriate isoperimetric (resp. isodiametric) inequality.

Example. If one takes P to be a presentation with no relators, then the
area function is identically zero, so the Dehn function is zero. However, a
presentation of a free group with defining relators will have a nonzero Dehn
function. Thus the awkward constants D and E in Proposition 1 are in
general necessary.
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Remark. An interesting variation on the notion of isoperimetric function was
suggested by Gromov. We consider words w which are boundary labels of
diagrams whose domains are compact orientable surfaces of some (variable)
genus. Equivalently, we may assume there are words u1, u2, ... , u9, v1i v2,

, v9 such that w' = to rj9 1 [ui, vi] represents 1 in the group G of our finite
presentation P; here [ui, vi] denotes the formal commutator uiviui 1v, 1, where
Ui 1 denotes the formal inverse of the word ui (invert each letter and write
them in the reverse order); write w - 0 if there exists g > 0 such that this
condition is satisfied.
We define Area''p(w) = min Areap(w'), where the minimum is taken over all

w1

words w' constructed from w in this way. Then we define

f'(n) = max Are4(w).
W-0

t(w)<n

Gromov remarks that the function f' is closer in spirit to the differential
geometric notion of minimal surface spanned by a loop, where one cannot
control the genus of the (orientable) surface spanned.

2. Relation with the word problem

The functions introduced in §1 are important for discussing the complexity
of the word problem for a finitely presented group.

Theorem 2.1. The following are equivalent for a finite presentation P.
2.1.1. G(P) has a solvable word problem.
2.1.2. P has a recursive isoperimetric function (in which case, the Dehn

function itself is recursive).
2.1.3. P has a recursive isodiametric function.

Let us sketch the argument. For the implication (1)=(2), we solve the word
problem for all words of length at most n, thereby obtaining for each word w
satisfying £(w) < n and w = 1 in G some expression

k(w)

e; u;w =
i=1

in the free group F. Let us define a function f by

f(n) = sup k(w).
I(w)<n

w-1

Then f is a recursive isoperimetric function for P.
The implication (2)x(3) follows from the following elementary result.
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Lemma 2.2. If f is an isoperimetric function for P, then n '-a M f (n)+n is
an isodiametric function for P, where M is the maximum length of a relator.

Proof. Let w be a word of length n representing 1 in G = G(P) and let D
be a van Kampen diagram of minimal area for w. If V and F denote the
number of vertices and faces of D, we observe that the length of the longest
edge path in DM which does not contain a circuit is at most V -1 < MF + n.
From this it follows that (D) < M f (n) + n, and n H M f (n) + n is
an isodiametric function for P.

The implication (3) .(1) proceeds as follows. Let f be an isodiametric func-
tion for P. Suppose 1(w) = n and w = 1, with G = G(P). Then there is a
description

m
u

i-1

with 1(u;) < f (n) + M, with M as above. But the set

S,,, = {R" I R a relator, $(u) < m}

is finite and generates a finitely generated subgroup N,,, < N < F. Since the
problem of deciding whether or not a word lies in a given finitely generated
subgroup of the free group F is effectively solvable, we first calculate m =
f (n) + M and then apply this algorithm to decide whether or not w E N,,,.
This solves the word problem for G.
A particularly attractive geometric way of deciding whether or not w E N,,,
as above has been given by Stallings [St1]. His algorithm amounts to using
an immersion of finite graphs as a finite state automaton. Note that the
automaton depends on the word w being tested.

Remark. It is somewhat mysterious that one has to proceed from Theorem
2.1.3 to 2.1.2 via 2.1.1, thereby involving the complications of general recur-
sive functions. A more satisfying situation is to have a formula for an isoperi-
metric function in terms of an isodiametric function. One conjecture, which
does not contradict any known example, is that there should be an isoperi-
metric function of the form n H a1(') , for a constant a (Stallings raised this
question in the special case when f is linear). In this connection, D. E. Cohen
has recently shown [C] that if f is an isodiametric function for a finite pre-
sentation P, then there are positive constants a, b so that n H ab (n)+n is an
isoperimetric function for P. His proof makes use of an analysis of Nielsen's
reduction process for producing a basis for a subgroup of a free group (see
also [G4] for a different treatment involving Stallings' folds).

Here is a striking example, which shows that the complexity of the word
problem for 1-relator groups, as measured by the growth of an isodiametric
function, can be quite large.
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Example. Each isodiametric and each isoperimetric function for the presen-
tation P = (x, y I x,y = x2) grows faster than every iterated exponential
[G1].

Remark. Magnus showed that all 1-relator groups have a solvable word
problem [LS]. However his argument gives no indication of the complexity
of the algorithm. It is of interest to determine how fast the Dehn function
of a 1-relator presentation can grow. We have shown (unpublished) that
Ackermann's function ff, is (up to the equivalence relation of Proposition 1.1)
an isoperimetric function for every 1-relator presentation. Here one defines
functions f0 : N - N for ordinals a < w (where w is the first infinite ordinal)
inductively by fi(s) = 2s, f,,+1(s) = f(')(s), where ft '1 denotes the s-fold
iterate of fn, and f,,(s) = f,(s).
The central tool in proving these upper bounds for the Dehn functions of
1-relator presentations is the rewrite function for a pair (G, H), where H is
a finitely generated subgroup of the finitely generated group G. We suppose
A, B are finite sets of generators for G, H, respectively, and we let I g I G,A

denote the distance of g E G from the identity in the word metric, and
similarly define I hIH,B for h E H. We let

fG,H(n) = max I hI H,B,
hEH

IhIG,AGn

and we call fG,H the rewrite function. We calculate fG,H inductively for a
1-relator presentation and Magnus subgroup and then apply the result to
calculate an isoperimetric function. The rewrite function bears the same
relation to the generalized word problem that the Dehn function bears to the
word problem.
It is an open question whether for each n one can find a 1-relator presentation
whose Dehn function grows at least as fast as fn. The Dehn function for the
presentation xxy = x2 grows at least as fast as f3, but this is the fastest
growth we have actually proved can be realized for 1-relator presentations
[G2].

3. Examples and applications

By Proposition 1.1, the simplest invariant condition on isoperimetric functions
is that they be linear. In this case there is a satisfactory characterization.
If we have a given finite set of generators A for a finitely presented group
G, then for sufficiently large N, the presentation PN, with generators A and
relators consisting of all relations among the generators of length at most N,
will be a presentation of G.
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Theorem 3.1. The following are equivalent for a finitely presented group
G.
3.1.1. G has a linear isoperimetric function.
3.1.2. G is word hyperbolic.
3.1.3. There exists a finite presentation for G which satisfies Dehn's algo-

rithm.
3.1.4. If A is a finite set of generators for G, then for all sufficiently large

N, the presentation PN for G satisfies Dehn's algorithm.

The unexplained terms in the theorem are as follows. Let A be a finite set
of generators for G and let I' be the associated Cayley graph, equipped with
the word metric. The group G is called word hyperbolic if I' is 6-hyperbolic
for some b > 0; here r is called 6-hyperbolic if every geodesic triangle A in
it satisfies Rips's condition R5: every point on one side of A is at distance
at most b from the union of the other two sides. The finite presentation P
for G is said to satisfy Dehn's algorithm if, given any nonempty word w with
zw = 1, there is a relator R of P such that w contains greater than z of the
word R as a contiguous subword.
The proof of Theorem 3.1 is very attractively presented in [ABC].

The next step beyond linear is subquadratic isoperimetric functions. In this
case, Gromov asserts that a finite presentation with a subquadratic isoperi-
metric function also possesses a linear isoperimetric function [Gr, 2.3.F].
A. Yu. O1'shanskii recently found an elementary proof of this important result
[01].

In order to explain how quadratic isoperimetric functions arise, it is necessary
to introduce new notions.

Definition 3.2. Let G be a finitely generated group with finite set A of
semigroup generators and associated Cayley graph F. One has the evaluation
mapping A* -+ G, w H w, where A* is the free monoid on A. Such a word w
can be viewed as a path w(t), t > 0, parametrized by arc length for t < f(w),
starting at the base point 1 (where G is identified equivariantly with the vertex
set of F), moving over an edge in unit time, until it reaches its end point w at
time £(w); from then on, w(t) remains constant at the vertex w. A combing
is a section a : G -> A* of the evaluation mapping such that there exists a
constant k > 0 such that

(3.2.1) `dg E G Va E A Vt > 0 one has o-(g)(t)) < k;

here Ix - yI denotes the distance from x to y in F. The condition (3.2.1)
is called the k -fellow traveller condition. The finitely generated group G is
called combable if it admits a combing. In addition we say that v is linearly
bounded if there are constants C, D > 0 such that f(o(g)) < CIgI + D for all
9 EG, where IgI:=I1-gI
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The combing o, is called an automatic structure if the subset a(G) C A* is a
regular language; that is, o(G) is the precise language recognized by a finite
state automaton. It is a result of [ECHLPT] that an automatic structure o is
linearly bounded.

Remark. The definition of combing adopted in [ECHLPT] is more restric-
tive than the one we have adopted, following [Gh, p. 26], [Sh]: the former
definition implies linear boundedness. It is known that both combability and
the existence of a linearly bounded combing are quasiisometry invariant con-
ditions [Sh]. It is unknown whether the existence of an automatic structure
is quasiisometry invariant, although one of the results of [ECHLPT] is an
algorithm which enables one to translate an automatic structure from one
finite set of semigroup generators to another.

Theorem 3.3. If G is a finitely generated group with a linearly bounded
combing, then G is finitely presented and admits a quadratic isoperimetric
function.

We give the proof, which is due to Thurston, of this important result; the
reader may consult [ECHLPT], where the result is proved in conjunction with
higher dimensional isoperimetric inequalities.
Suppose that A is a finite set of semigroup generators for G and that o'
G -> A* is a linearly bounded combing. Let o satisfy the k-fellow traveller
condition. Let w E A* be such that w = 1, so w represents a closed path
based at the vertex 1 in the Cayley graph I' and let £(w) = n. We shall
construct a finite presentation P for G and a van Kampen diagram for w in
P. Let tri = for integers 0 < i _< n, so of is a path in I' from 1 to
w(i). Observe that

l o,i (j) - oi+1(j) I < k,
for each integral time j. This means that we can consider the vertices oi(j),
vi (j + 1), Qi+1(j + 1), and o i+l (j) as lying on a quadrilateral Qi, whose bound-
ary label is a relation of length at most 2k + 2. If we take the presentation
P to consist of A as generators and as relators, all relations among these
generators of length at most 2k + 2, then we see that w is a consequence of
these relators. Consequently P is a finite presentation for G. Observe that
we have only used the k-fellow traveller property so far and not the linear
boundedness of the combing.
The quadrilaterals Qi; fit together to form a van Kampen diagram D for
w. Observe that for fixed i we can cut off j at time max(t(vi), £(o +1)),
since both paths, vi and ui+1, will have reached their end points by then.
But £(ci) _< Ci + D, since Iw(i)I < i. It follows that the total number of
quadrilaterals in D is at most

n

E(Ci + D) < An2 + B
i=o
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for constants A, B > 0. Thus Areap(w) < A1(w)2 + B, and the theorem is
established.

Remark. Thurston asserts that the (2n + 1)-dimensional integral Heisenberg
group for n > 2 and SLn(Z), for n > 4, satisfy the quadratic isoperimetric
inequality [ECHLPT]; no details are available at this time. It would ap-
pear then that there was no simple characterization of groups satisfying the
quadratic isoperimetric inequality. It is proved in [ECHLPT] and [G2] that
the 3-dimensional integral Heisenberg group satisfies a cubic isoperimetric in-
equality (see also Section 5 below). Furthermore, it is shown in [ECHLPT]
that an isoperimetric function for SL3(Z) must grow at least exponentially.
Compare also the arguments sketched in [Gr2].

Proposition 3.4. If the group G is combable, then it satisfies the linear
isodiametric inequality.

Proof. Let o : G -> A* be a combing, where A is a finite set of semigroup
generators. Suppose o satisfies the k-fellow traveller property. As in the first
part of the proof of Theorem 3.3, we obtain a finite presentation for G whose
relators are all words in w E A* satisfying w = 1 and such that 1(w) < 2k+2.
Furthermore, we obtain a van Kampen diagram D for w, as in the second part
of the proof, except now we have no bounds on the lengths of the paths oi.
Nevertheless, if we consider a vertex oi(j ), then by holding j fixed and letting
i vary, we arrive at the boundary of V in at most kt(w) steps; once we arrive
at the boundary, then we can follow it in at most 1(w) additional steps to
arrive at the base point. Since no vertex of D is farther than k from a vertex
of type oi(j), it follows that the distance in the word metric of DM from the
base point to any vertex is bounded by (k + 1)1(w) + k. This establishes the
linear isodiametric inequality.

Remark. It is asserted in [Gh, p. 27] that SL3(Z) is not combable, where
the definition of combability adopted there is the same as ours. Thurston's
result (Theorem 3.3) is quoted for the proof. However, this last result applies
only for a linearly bounded combing, so it must be considered open whether
SL3(Z) is combable or not. We proved in [G3] that all combable groups satisfy
an exponential isoperimetric inequality, and this is the best result known to
date in this generality.

Remark. There is an analogous notion of asynchronously combable group,
where one has a section o : G -+ A* satisfying the k-asynchronous fellow
traveller property: after a monotone reparametrization, the paths o(g) and
v(ga) are k-fellow travellers, for g E G and a E A. The asynchronous combing
a is called an asynchronously automatic structure if the language Q(G) C A*
is regular. M. Shapiro has recently proved that the definition just given is
equivalent to that of [ECHLPT] for an asynchronously automatic structure
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on a group [Sp2]. One can show that every asynchronously combable group is
finitely presented and satisfies a linear isodiametric inequality. Furthermore,
if G is asynchronously automatic, then it has an exponential isoperimetric
function[ECHLPT], [BGSS].

Remark. In the original version of this survey, we raised the question whether
the integral Heisenberg group was combable. Gromov asserted at the confer-
ence that the real Heisenberg group is combable. There are several arguments
sketched in [Gr2], but our attempts to fill in the details have only succeeded
in proving the weaker result that the group is asynchronously combable; so
we regard this as an open question of great interest. In this connection,
we mention a recent result of M. Bridson's [Bd], that the group Z" >i Z is
asynchronously combable for all 0 E Gl"(Z).

Theorem 3.5. The following finitely presented groups all have linear isodi-
ametric functions.
3.5.1. Lattices in the 3-dimensional Lie group Nil.
3.5.2. Lattices in the 3-dimensional Lie group Sol.
3.5.3. a1 (M), where M is a compact 3-manifolds for which Thurston's ge-

ometrization conjecture [Th] holds.

The statements about lattices in Nil and Sol are proved in [G1]. Here is
an extremely rough sketch for lattices in Sol. The problem is reduced to

11
showing that the "Fibonacci group" V >4,5 Z, where

1,
satifies a

1 1 0
linear isodiametric inequality. This is deduced from arithmetic properties of
the Fibonacci sequence.
The argument for 3.5.3 is as follows. A result of [ECHLPT] states that
if no geometric piece in the Thurston decomposition is a Nil or Sol group,
then the fundamental group is automatic. Since the Nil and Sol pieces in
the Thurston decomposition occur only as connected summands, it follows
that the fundamental group irl(M) of a compact 3-manifold M for which
Thurston's geometrization conjecture holds is the free product of an auto-
matic group with a finite free product of Nil and Sol groups. Since each
of these free factors satisfies the linear isodiametric inequality and since the
class of finitely presented groups satisfying the linear isodiametric inequality
is closed under finite free products, it follows that irl(M) satisfies the linear
isodiametric inequality.

Remark. Bridson's recent results [Bd] strengthen Theorem 3.5, showing that
the fundamental group of every compact 3-manifold satisfying Thurston's
geometrization conjecture is asynchronously combable. Bridson raises the
question of the "logical complexity" of the language of the combing.

Remark. It is not known how wide the class of finitely presented groups
satisfying a linear isodiametric inequality is. For instance, we do not know
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an example of a finitely presented linear group which does not satisfy a linear
isodiametric inequality (the example xxs = x2 given in §2 is not a linear
group). Since a finitely presented linear group has a solvable word problem,
Theorem 2.1 will be of no help in constructing an example.

Remark. It follows from results of [ECHLPT] that if a compact 3-manifold
satisfies Thurston's geometrization conjecture, then its fundamental group
has an exponential isoperimetric function. If, in addition, there are no Nil or
Sol pieces, it is automatic and satisfies the quadratic isoperimetric inequality.

Question. If 0 is an automorphism of the finitely generated free group
F and if G = F xi Z is the corresponding split extension, does G satisfy
the quadratic isoperimetric inequality? The result of [BF], that G is word
hyperbolic if and only if it contains no subgroup isomorphic to Z2, can be
viewed as positive evidence. Furthermore, G is automatic if 0 is geometric
(that is, if 0 is induced by a homeomorphism of a compact surface with
nonempty boundary). For in this case, G is 7rl(M), where M is a compact
Haken 3-manifold, and Thurston's geometrization conjecture is known to hold
for such M [Th]. A cohomological dimension argument shows that M has no
Sol or Nil pieces, whence, by the preceding Remark, G is automatic.
That this question may be delicate is suggested by our result (unpublished)
that if 0 E Aut(F(a, b, c)) is given by q(a) = a, c(b) = ba, O(c) = cat, then
G = F(a, b, c) >4,5 Z cannot act properly discontinuously and cocompactly on
any geodesic metric space satisfying Gromov's condition CAT(0) (see [GH]
for the CAT(0) property).

The original motivation for introducing isodiametric functions was a result
proved by Casson in 1990. We shall state a weaker version of his result which
falls naturally within our framework. We say that the finite presentation P
satisfies condition ID(a), where a > 0, if there is an a _> 0 so that n H an+e
is an isodiametric function for P. This is of course just a reformulation of a
linear isodiametric inequality.

Theorem 3.6. [SGJ Let M be a closed, orientable, irreducible, aspherical
3-manifold whose fundamental group admits a finite presentation satisfying
condition ID(a), where a < 1. Then the universal cover of M is homeomor-
phic to R3.

For example, a combable group G whose combing o is such that each word
or(g) is geodesic has a finite presentation satisfying condition ID(2). Every
finitely presented group which possesses an almost convex Cayley graph, in
the sense of Cannon [Ca], has an ID(2) presentation [Gl] (see also §4 below).
Since it is known that every Nil group has at least one almost convex Cayley
graph [Spl], it follows that Nil groups have ID(Z) presentations. Another
argument, proving that Nil groups have ID(4) presentations, appears in [G1].
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The difficulty with these conditions of course is that they are not invariant
under change of generators.
We should also cite additional work in connection with Casson's theorem [P],
[Br], [St2].

4. Relation with peak reduction algorithms

In this section, G will denote a finitely presented group with finite set of
semigroup generators A and associated Cayley graph r.

Definition. Let µ : G -+ N be a function such that S = {g E G I µ(g) = 0}
is a finite subgroup of G with S C A. Let P be a finite presentation for
G with generators A and such that P contains all cyclic conjugates of its
relators and their inverses and, in addition, P contains the group table for
the finite group S. We say that P admits a peak reduction algorithm with
respect to the function p if the following condition holds: if w E A* is such
that p(w) _< u(fva) > p(waa') for some pair of generators a, a' E A, then
there is a relator of P of the form aa' = a1a2 ... ak, with a; E A, such that
p(wa1 ... a,) < p(wa) for all 1 < i < k.

Define a function f, : N -* N by f,, (n) = sup µ(g).
Isl<n

Theorem 4.1. [G1] Suppose that P admits a peak reduction algorithm for
the function p : G --> N. If M denotes the length of the longest relator of P,
then
4.1.1. the function n i-> M f, (n) + 1 is an isodiametric function for P, and
4.1.2. the function n -4 n Mfµlnl+l is an isoperimetric function for P.

We shall now give some examples of peak reduction algorithms. With G, A, r
as above, let PN be the finite presentation with generators A and relators
all words w E A* with w = 1 and 1(w) < N. Note that it follows from
the fact that G is finitely presented that PN is a presentation of G for all N
sufficiently large. We set Bn and Sn to be the set of vertices in the ball and
sphere of radius n at the identity element in r.
We recall [Ca] that r is called almost convex if for all n and for all pairs of
points x, y E Sn which are joined by a path of length at most 3 in IF there
is a path in Bn joining these points of bounded length (where the bound is
independent of n, x, and y).

Proposition 4.2. [Gi] The Cayley graph r is almost convex if and only
if there exists N > 0 such that PN satisfies peak reduction for the function
µ(g) = Igi.

The proof is not difficult from the definitions.
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Corollary 4.3. If G has an almost convex Cayley graph, then it has a linear
isodiametric function and an exponential isoperimetric function.

Theorem 4.4. The groups Aut(F) and Out(F), where F is a finitely gen-
erated free group, have exponential isodiametric functions and isoperimetric
functions of the form n i-> AB°

This is a consequence of results of Whitehead, Higgins and Lyndon, and
McCool on the automorphism group of a finitely generated free group. For
instance, f o r the group Aut(F) one chooses a free basis x1i x2, ... , X. for F
and one takes µ(4) = > 1 L(q(xi)) - r. Here L(w), for a word w in F, is
the length of a cyclically reduced word conjugate to w. The generators for
Aut(F) are taken to be the Whitehead automorphisms [LS]. The function
f, is seen to grow exponentially with n. McCool's algorithm [Mc] is a peak
reduction algorithm for these data, so the assertion for Aut(F) follows from
Theorem 4.1. The argument for Out(F) is similar.

Remark. These results for Aut(F) and Out(F) are surely not best possible.
It is an open question whether Out(F) is automatic; if this were true, then the
quadratic isoperimetric inequality would hold. In this connection, we have
shown (unpublished) that neither Aut(F) for rank(F) > 3 nor Out(F) for
rank(F) > 4 can act properly discontinuously and cocompactly on a geodesic
metric space which satisfies Gromov's condition CAT(0). The situation for
Out(F) when rank(F) = 3 is still open.

Theorem 4.5. SL3(Z) has an exponential isodiametric function and an
isoperimetric function of the form n - * AB

This follows from a result of Nielsen's [N], that the group SL3(Z) satisfies
a peak reduction algorithm for the function u given by µ(x) _ (E A) - 3,
for x E SL3(Z). The generators here are the elementary transvections EE,(1)
and the signed permutation matrices. In this case the function f, grows
exponentially.

Remark. It follows from results of [ECHLPT] that any isoperimetric func-
tion for SL3(Z) must grow at least exponentially. Thus from Theorem 4.5 we
deduce that the Dehn function for a finite presentation of SL3(Z) has some-
where between exponential and twice-iterated exponential growth. Which, if
either, is it?

Question. Can Nielsen's argument for SL3(Z) be generalized to a peak
reduction algorithm for SLn(Z)? The answer is surely `yes', but it seems this
has never been written down (compare [Mi, §10] where a related result is
established).' Does SL3(Z) have a linear isodiametric function?

1 We have in the meantime received the preprint [Ka] which contains the peak reduction
lemma for the general linear groups.
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5. Lower bounds for isoperimetric functions

The methods of this section for establishing lower bounds for the Dehn func-
tion of a finite presentation are due to [BMS] (other methods for finding lower
bounds can be found in [G2]). We shall prove that the Dehn function of the
free nilpotent group on p > 2 generators of class c grows at least as fast as
a polynomial of degree c + 1. Since it is known that every finitely generated
nilpotent group has a polynomial isoperimetric function [G1], it follows that
arbitrary high degree polynomial growth is exhibited by these free nilpotent
groups as c -+ oo.
Let P = (x1, X2.... , xp I R1 i R2, ... , Rq) and let F be the free group freely
generated by the generators x5, x2, ... , xp and let N a F be the normal closure
of the relators. We let G = G(P) = F/N as earlier.

Proposition 5.1. The group N/[F, N] is a finitely generated abelian group.

Proof. The identity R, = [u, Ri]Ri E [F, N]Ri shows that the cosets of the
relators Ri generate the factor group N/[F, N]. Since [F, N] D [N, N], this
factor group is abelian, and consequently it is a finitely generated abelian
group.

Definition. Let V = Q® N/[F, N], considered as a finitely generated vector
space over Q. If v1i V2.... vd is a basis for V, we define the £1-norm lvil of
a vector v E V with respect to this basis to be jail, where v = d 1 aivi,
ai E Q.
If W E N, then we define lw[1 to be the £1-norm of 10 [w], where [w] is the
coset w[F, N] E N/[F, N].

Theorem 5.2. With the notations above, there is a constant C > 0 so that
for all w E N we have

Iwli < CAreap(w).

Proof. Let C = maxl<i<q 1R211. This is the number C of the theorem.
Suppose now that w E N, so w = jjj R4. , where ej = ±1 and u, E F
and where k = Areap(w). Observe that since R ' E [F, N]Ri,, we have
[R;j"'] = ej[Ri,] in V. From this it follows that wit Ej_1
Ck < CAreap(w). This completes the proof.

Remark. If we change the basis of V above and calculate the 21-norm with
respect to the new basis, the effect is to change the constant C in Theorem 5.2.

Next we recall some facts about nilpotent groups. A central series for a group
G is sequence of subgroups

H,, <H,_1 <... <Ho=G
so that [G, Hi] < Hi+1 for all i. The group G is called nilpotent if it has such
a central series with H,, = 1 for some n, and the minimum such number n for
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all central series is called the class of nilpotence. For example, a nontrivial
abelian group has class 1 and the Heisenberg group has class 2. The lower
central series {G,,, n > 0} for any group G is defined inductively by Go = G,
Gn+1 = [G, Gn]. One has that Gi < H, for any central series Hi as above, so
the lower central series descends at least as fast as any central series for G.
In particular we can apply these notions to the free group F freely generated
by X1, x2, ... , x,,, where p > 2, to get the lower central series {Fn} of the free
group. The group FIFE is called the free nilpotent group on p generators of
class c. It is a standard result that the normal subgroup F,iF is generated by
all left normed commutators of length c+ 1, ad(ul)oad(u2)o...oad(u,)(u,+1),
where u, E F. Here ad(u)(v) = [u, v]. As an example, using this observation
it is easy to see that the free nilpotent group on 2 generators of class 2 is the
Heisenberg group.

Theorem 5.3. The free nilpotent group on p > 2 generators of class c > 1
has the property that its Dehn function grows at least as fast as a polynomial
of degree c + 1.

Proof. 2 Since the free nilpotent group on p > 2 generators and class c
retracts to that on 2 generators and class c, it suffices to prove the result
for 2 generators. Let F = F(a, b) be the free group freely generated by a, b
and let w,,, = ad(an)(c)(bn) E F. One checks that .o(wn) grows linearly with
n. However, when [wn] is considered in V = Q ® Fc/[F, FF] = Q 0 F/FF+1,
one has by multilinearity [wn] = nc+1[ad(a)(c)(b)]. But it is known that the
Engel element ad(a)(c)(b) of the free abelian group Fc/FF+1 is an element of
a Z-basis [MKS, §5.7 Problem 4], so [ad(a)(c)(b)] 0 in V. It follows that
IwnI1 = nc+1l[ad(a)(c)(b)]I1 # 0, so IwnI1 grows like a polynomial inn of degree
c + 1. It follows from Theorem 5.2 that Areap(wn) grows at least as fast as
a polynomial in n of degree c + 1, where P is a finite presentation for F/Fc.
Since Q(wn) is linear in n, it follows that the Dehn function for F/Fc must
grow at least as fast as a polynomial of degree c + 1. This completes the
proof.

Remark. If N < [F, F] above, then N/[F,N] = H2(G, Z), as one sees from
Hopf's formula. In this case the vector space V is H2(G, Q).

Remark. Taking p = 2 and c = 2 in Theorem 5.3, we recover the result of
[ECHLPT] and [G2] that the Dehn function for the 3-dimensional integral
Heisenberg group grows at least as fast as a cubic polynomial. The next
result shows that this result is optimal (other proofs that the 3-dimensional
integral Heisenberg group has a cubic polynomial for its Dehn function are
given in [ECHLPT] and [G2]).

2 H. Short told me the statement of Theorem 5.3 at the Sussex conference, from which I
worked out the proof given here. Baumslag, Miller, and Short wrote me subsequently that
this argument was one of several they had in mind.
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Proposition 5.4. The Dehn function for the 3-dimensional integral Heisen-
berg group H grows like a cubic polynomial.

Proof. We have already shown that the Dehn function grows at least as
fast as a cubic polynomial. We shall obtain now a cubic polynomial upper
bound. A presentation for H is P = (x, y, t I xt = xy) yt = y, xy = yx). Let
Q = (x, y, t I xt = xy, yt = y) and let R = (x, y xy = yx). Observe that Q
is a presentation for the split extension F(x, y) >i,6 Z of the free group F(x, y),
where q(x) = xy, q(y) = y.
Let w be a word in the generators of P with with t(w) = n and such that
w = 1 in H. We shall find a van Kampen diagram for w in two steps.
First, using only the relations of Q, we find a sequence of cyclic words w =
wo, W 17. .. , wn_1 = w', where each is obtained from the preceding by at most
a single t-reduction (viewing t as the stable letter in the HNN extension
F(x, y) )4,k Z with base group F(x, y)), until one runs out of t-letters. If
t", £y, it denote respectively the number of letters x±, y±, tt in a free word,
we see inductively that £ (wi) _< 1.,(w), £y(wi) < $.,(wi_1) + £5(wi_1), and
ft(wi) < max(Pt(wi_1) - 2,0). It follows that £ (wi) < it,,(w) + £y(w) <
(i + 1)n, and there is an annular diagram Ai in Q connecting wi_1 with wi
of area Area(A1) _< £(wi_1) < in. If we fit these annular diagrams together,
we obtain an annular diagram D1 in Q with boundary components labelled
w and w' such that Area(Di) < E n-1 in = 0(n3)
Since f(w') < n, £y(w') < n2, and £t(w') = 0, we can find a disc diagram D2
for w' in R with Area(D2) < n3. If we fit D1 and D2 together along their
common boundary component labelled w', we obtain a disc diagram D for
w with Area(D) < 0(n3) + n3 = 0(n3). This completes the proof of the
proposition.

The same method as in Theorem 5.3 suffices to prove the following result.

Proposition 5.5. If G is a finitely generated nilpotent group of class c given
by the exact sequence 1 -> N --+ F ---> G -> 1, with F finitely generated and
free (so Fc < N), and if the canonical map Fc -4 N/[F, N] has infinite image,
then the Dehn function for G grows at least as fast as a polynomial of degree
c + 1. 0

Example. The (2n + 1)-dimensional integral Heisenberg group i52n+1 is given
by the presentation

(x1, x2) ...,x,, y1, y2, ... , yn I [xi, xj] = 1, [yi, yj] = 1 for all i, j,

[xk, yt] = 1 for all k # 1, [x,n, y,n] = z for all m, z central ).

It is more convenient to use another presentation for Sj2n+1 obtained by Ti-
etze transformations from the preceding by eliminating the central generator
z. This new presentation has generators x1, x2, ... , xn, y1, Y2.... yn freely gen-
erating the free group F of rank 2n. The normal subgroup of relations N is
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contained in [F, F] = F1 for this second presentation, and since h2n+1 is
nilpotent of class 2, we have F2 C N. We have then the next result.

Proposition 5.6. With the notations preceding we have
5.6.1. if n > 2, the canonical homomorphism

F2/F3 -p N/[F, N] = H2(52n+1, Z)

is the zero map, whereas
5.6.2. if n = 1, then we have F2/F3 - H2(&, Z),

Proof. The second assertion (5.6.2) follows from earlier remarks since $3 is
the free nilpotent group of class 2 on 2 generators. We proceed then to the
proof of (5.6.1).
The group F2/F3 is generated by elements [u, [v, w]] where each of u, v, w is
in the set {x;, y;; 1 < i < n}. Since we have [xi, yi] E N for i # j and since
[xk, x,], [yk, y,] E N for all k, 1, it follows that we have [u, [xi, yj]] E [F, N]
for i # j and [u, [xk, x1]] E [F, N], [u, [yk, y,]] E [F, N] for all k, 1, where
u E {x;, y;; 1< i< n}.
It remains to prove that [xj, [xi, y;]] E [F, N] and [y [x;, y;]] E [F, N] for all
i, j. We shall prove the first assertion, since the second follows symmetrically.
If j # i, this assertion is a consequence of an identity attributed variously to
E. Witt or P. Hall,

[b, [a-1, c]]a[a, [c 1, b]]`[c,
[b-1,

a]]6 = 1,

for all elements a, b, c in a group. We remind the reader here that our con-
vention for commutators is [a, b] = aba-1b-' and ab = bab-1. If we substitute
b = x a = xi c = y; in this identity, we find that two terms of the product
are in [F, NJ, whence the third, a conjugate of [x [xi, yi]], is also in [F, N].
It remains then to prove that [xi, [xi, y;]] E [F, N]. Since n > 2, there is an
index j # i. Observe first that [x;xj, y;y.,-1] E N, as one sees by an elementary
computation in b2n+1, so we have [xi, [xixj, yiy,,-1]] E [F, N]. The commutator
[xixj, y;y,,-1] can be expanded as the product of four commutators, making use
of the relation [a, bc] = [a, b] [a, c]6; we obtain

xs'x', yiy-1 ]_ [x'' yi]xi[xiv yi][xj' yj t
-1]yixi[xi, yj-17N[

When we expand the expression [x;, [x;xj, y;yj 1]] and make use of the com-
mutator identities (and the fact that F2 < N, so F3 < [F, N]), we obtain
that this class in N/[F, N] is that of the product of four classes, those of
[xi, [x3, yi]], [xi, [xi, yi]], [xi, [xi, y.,-1]], and [xi, [xi, yi 1 ]]. The first, third, and
fourth terms have already been shown to be in [F, N]. Since the product lies
in [F, N], it follows that the second term, [xi, [xi, y;]], is also in [F, N]. This
completes the proof of the Proposition.
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Remark. The proposition just proved shows that Thurston's assertion, that
f)2n+1 satisfies the quadratic isoperimetric inequality for n > 2, is consistent
with Proposition 5.5: if the homomorphism F2/F3 -4 N/[F, N] in (5.6.1) had
had infinite image, then the Dehn function for this group would have been a
cubic polynomial and not quadratic.

Remark. It is proved in [G1] that a finitely generated nilpotent group has a
polynomial isoperimetric function of degree 2h, where h is the Hirsch number.
The bound on the degree was improved in [Co] to 2.3°, where c is the class
of nilpotence. We do not know an example of a finitely generated nilpotent
group where there does not exist an isoperimetric polynomial of degree c + 1.

Acknowledgments. I wish to thank Alexander Ol'shanskii, Hamish Short,
and John Stallings for their helpful criticisms.
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On Hilbert's Metric for Simplices

Pierre de la Harpe
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1211 Geneve 24, Switzerland.

Abstract. For any bounded convex open subset C of a finite dimensional
real vector space, we review the canonical Hilbert metric defined on C and
we investigate the corresponding group of isometries. In case C is an open
2-simplex S, we show that the resulting space is isometric to R2 with a norm
such that the unit ball is a regular hexagon, and that the central symmetry
in this plane corresponds to the quadratic transformation associated to S.
Finally, we discuss briefly Hilbert's metric for symmetric spaces and we state
some open problems.

1. Generalities on Hilbert metrics

The first proposition below comes from a letter of D. Hilbert to F. Klein
[Hill. It is discussed in several other places, such as sections 28, 29 and 50 of
[BuK], and chapter 18 of [Bull, and [Bea]. There are also nice applications of
Hilbert metrics to the classical Perron-Frobenius Theorem [Sae], [KoP] and
to various generalizations in functional analysis [Bir], [Bus].
Let V be a real affine space, assumed here to be finite dimensional (except in
Remark 3.3), and let C be a non empty bounded convex open subset of V. We
want to define a metric on C which, in the special case where C is the open
unit disc of the complex plane, gives the projective model of the hyperbolic
plane (sometimes called the "Klein model").
Let x, y E C. If x = y, one sets obviously d(x, y) = 0. Otherwise, the well
defined affine line tx,y C V containing x and y cuts the boundary of C in two
points, say u on the side of x and v on the side of y; see Figure 1. One sets

vx ux
d(x, y) = log [x, y, v, u] = log v - y : u - y ,
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where v - x denotes the ratio f(v) - f(x)
for some (hence all) affine

v - y f(v) - f(y)
bijection f from Qx,y onto R. (In particular this definition makes sense without
any metric on V; indeed [x, y, v, u] is invariant by any projective isomorphism
of the projective line tx,y U {oo}.) Notations are such that [x, y, v, u] > 1, so
that d(x, y) > 0.

Proposition 1. (Hilbert) Notations being as above, d is a metric on the
convex set C.

Proof. We check the triangle inequality for three points x, y, z in C. If these
are on a line, say with z between x and y, it is straightforward to check the
equality d(x, y) = d(x, z) + d(z, y). If x, y, z are not collinear, we introduce
in the plane which contains them the following points, as in Figure 1 (where
the curve y indicates the intersection of the boundary of C with the plane
containing x, y and z):

u and v, where £x, cuts y,
a and c, where &,y cuts y,
b and d, where 2x z cuts y,
p, the intersection of Qa,b and tc,d (this p may be at infinity),
u' = Qa,b n 1x,y, z' - 1p,z n tx,Y v' _ id,c n tx,y'

One has on one hand
[x,z,d,b] = [x,z',v',u'],
[z,y,c,a] = [z,y,v,u],

by projective invariance of the cross-ratio (see for example Lemma 6.5.3 in
[Ber]). On the other hand

[x,y,v,u] = [x, z,v,u][z,y,v,u],
[x, y, v, u] :5 [x, y> v, u l

by straightforward computations. It follows that

d(x, y) < log [x, z', v', u'] + log [z', y, v', u'] = d(x, z) + d(z, y),

as claimed. U

In case V is of dimension 1, it is easy to check that the metric d makes C
isometric to the Euclidean line. From now on, we assume that the dimension
of V is at least 2.
Let C and V be as above. The closure C of C is compact and convex. Two
distinct points p, q E C define a closed segment, denoted by [p, q], and an open
segment, denoted by ]p, q[, both in C. A face of C is a convex subset F of C
such that, for any pair (p, q) of distinct points of C such that ]p, q[nF 0,
one has [p, q] C F. A face is proper if it is neither empty nor C itself. The
relative interior of a face F of C is the interior of F in the smallest affine
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Figure 1: The triangular inequality.

subspace of V containing F. It is known that faces of C are closed, that proper
faces of C are in the boundary aC of C, and that the relative interiors of the
proper faces of C constitue a partition of aC (see e.g. [Bro], Theorems 5.1,
5.3 and 5.7).

Proposition 2. Let C C V be as above (with dim(V) > 2). Let x, y be two
distinct points of C, let u, v be the points where meets aC, and let F,
G be the faces of C whose relative interiors contain u, v, respectively. The
following are equivalent.

(i) There exists z E C such that x, y, z are not collinear and such that
d(x, y) = d(x, z) + d(z, y).

(ii) There exist open segments I, J such that u E I C F, v E J C G and
such that I, J span a 2-dimensional affine plane of V.

Proof. This is a straightforward consequence of the proof of Proposition 1.
Indeed, with the same notations as in this proof, (i) above holds if and only
if there exists z E C - 4,, such that u' = u and v' = v, and this in turn is
equivalent to (ii).

Recall that C is said to be strictly convex if all its proper faces are reduced
to points. Proposition 2 implies obviously the following.

Corollary. Assume that C is strictly convex, or more generally that all but
possibly one of its proper faces are reduced to points. Then C is a geodesic
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space for the Hilbert metric; more precisely, given any pair (p, q) of distinct
points in C, there is a unique geodesic segment between p and q, and this is
the straight segment [p, q].

By similar arguments, one shows: (i) that balls for Hilbert metrics are always
convex and (ii) that these balls are strictly convex if C fulfils the hypothesis
of the previous Corollary. The same holds for horoballs, these being easily
defined in case aC is smooth.
Here are two examples to which the Corollary does not apply. Let first S2 be
an open triangle in a plane and let x, y be two distinct points in S2. Denote
by I(x, y) the set of those points z E S2 such that d(x, y) = d(x, z) + d(z, y).
If the line 2x y through x and y contains a vertex of 32i then I(x, y) = [x, y]
by Proposition 2. Otherwise, one has [x, y] IC I(x, y), and I(x, y) is as in
Figure 2.

Figure 2: The set I (X' y).

Now let S3 be an open tetrahedron in 1R3. Let u, v be two points on the
interiors of two opposite edges of 33i and let x, y be two distinct points in
]u, v[. With the notations of Proposition 2, the faces F and G are the closed
edges of S3 containing u and v. As these edges are skew, Proposition 2 shows
that there exists a unique geodesic segment joining x and y. For generic
points x', y' E S3, we leave it to the reader to define a set I (x', y') as in the
previous example and to check that I (x', y') is a non degenerate polytope.
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Let again C C V be as in the beginning of the present section; we assume
moreover that V is an open cell inside some projective space V (see e.g.
§I.C in [Sam]). Let Isom(C) denote the group of all isometries of C for
the Hilbert metric. Let Coll(V) denote the group of all collineations (or
projective linear isomorphisms) of V and let Coll(C) denote the subgroup of
these g E Coll(V) for which g(C) = C. Observe that Coll(C) is a closed
subgroup of Coll(V) PGLn+l (R), so that Coll(C) is naturally a Lie group.
One has

Coll(C) C Isom(C),

by projective invariance of the cross-ratio. The following Proposition appears
in (29.1) of [BuK] (stated in the particular case where dim(V) = 2). By a
line in C, we mean a subset of the form ]u, v[ = £u,,, fl c where the points
u, v E aC are such that ] u, v [ ¢ 8C.

Figure 3: Equal cross-ratios.

Lemma. Suppose C is strictly convex, and consider g E Isom(C). Then:
(i) The image by g of a line in C is again a line in C.

(ii) The map g extends to a homeomorphism of C.
(iii) Cross-ratios of collinear points inside C are preserved by g.

Proof. Claim (i) follows from the previous corollary.
For (ii), define the extension g(u) of g to a point u E aC as follows. Choose
x E C, let f : [0, oo[ -+ [x, u[ denote the isometric parametrization of the ray
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(i.e. half-line) from x towards u, so that g f is a parametrization of the ray
g([x, u[), and set g(u) = limt-. g f (t). Let us check that this definition of
g(u) does not depend on x.
For any other choice x' E C and for the corresponding f' : [0, oo[ -+ [x', u[, set
g'(u) = limt.. gf'(t). It is easy to check that the Hausdorff distance between
[x, u[ and [x', u[ is finite. If one had g(u) # g'(u), the Hausdorff distance
between [g(x),g(u)[ = g([x,u[) and [g(x'),g'(u)[ = g([x',u[) would be infinite
(note that strict convexity is crucial here, as illustrated by Figure 4), and this
would be absurd. Hence g'(u) = g(u).
Let (u1)32,1 be a sequence of points in C converging towards some u E OC.
Denote by fj the isometric parametrization [0, d(x, uj)] -+ [x, ui], if uj E C,
or [0, oo[ -+ [x, uj [, if u, E OC, and denote by f the isometric parametriza-
tion [0,oo[ -> [x,u[. One has clearly d(fi (1),f(1)) = 0, thus also
lim1..d(gfj (1),gf(1)) = 0, and it follows that limj.,,o g(u,) = g(u). Thus
g : C -> C is continuous. We leave it to the reader to check that this latter
map is a homeomorphism.
For (iii), consider four pairwise distinct collinear points p, r, s, q E C, say
with r, s E ]p, q[ as in Figure 3. Choose Z E C such that z 1p,q. (Re-
member the standing hypothesis dim(V) > 2; the reader interested by the
case dim(V) = 1 will find his own argument.) Let u (respectively v) be
the intersection with 6C of the ray starting from z and containing p (resp.
q). Set x = 4,,. fl ]u, v[ and y = 4Z,, fl ]u, v[, so that [r, s, q, p] = [x, y,,v, u].
As g(r),...,g(p) are projectively related via g(z) to g(x),...,g(u), one has
similarly [g(r), g(s), g(q), g(p)] = [g(x), g(y), g(v), g(u)]. As g is an isometry,
one has also [g(x), g(y), g(v), g(u)] = [x, y, v, u]. The three previous equalities
imply [g(r), g(s), g(q), g(p)] = [r, s, p, q].

Figure 4 is related to the proof of the Lemma and shows that, when the
parallel lines fy,y, converge to $,,,,,,, one may have lim d(y, y') = log[v, v', b, a] <
oo in case C is not strictly convex, whereas lim d(y, y') = oo if C is strictly
convex.

Proposition 3. Let C C V C V be as above, and assume that C is strictly
convex. Then

Coll(C) = Isom(C).

Proof. Set n = dim(V). Let 1X0.... , xn, yo} be a projective frame in V.
(This means that there are linear coordinates in the (n + 1)-
vector space W above V such that {x0, ... , x, } is the image in V of the
corresponding linear basis and such that yo is the image in V of the vector yo
with all coordinates equal to 1.) For each k E {1,. .. , n}, let Yk denote the
intersection of the projective line Lk containing xo, xk and of the projective
hyperplane containing x1, , xk-1, xk+1, , x,,, yo. It is easy to check that
xo, xk, Yk are distinct, i.e. that they form a projective frame in Lk.



Hilbert's metric for simplices 103

Figure 4: Rays and strict convexity.

Let us assume firstly that yo E C. As we may choose x0,.. . , x,, in a small
neighbourhood of yo, we may also assume that x0,. .. , x, are in C. It follows
that yl, ... , yn are also in C.
Consider now g E Isom(C); we have to show that g E Coll(C). As g : C -> C
is a bijection preserving the lines, the points g(xo), ... , g(xn), g(yo) constitute
also a projective frame. Thus, there exists a unique h E Coll(V) such that
h(xk) = g(xk) for each k E {0,. .. , n} and such that h(yo) = g(yo). (See
for example Proposition 4.5.10 in [Ber].) Let k E {1,.. . , n}. As both g
and h preserve lines, one has also h(yk) = g(yk). As both g and h preserve
cross-ratios, and as they coincide on the three distinct points xo, xk, yk of the
projective line Lk, they coincide on the whole of Lk fl C.
Let j, k E 11,. . .,, n} be such that j 0 k, and let L;,k be the projective plane
containing L; and Lk. For any x E L,,k fl C such that x L; U Lk, choose two
distinct lines f, t' which meet L; U Lk in four distinct points. As the images
of I and t' by g coincide with their images by h, one has also h(x) = g(x).
Similarly, by induction on the subsets of {1,. .. , n}, one shows that h and
g coincide on the whole of C. Thus one has h E Coll(C) and the proof is
complete. 0

More generally, I believe that Isom(C) is naturally a Lie group, and that its
closed subgroup Coll(C) is also open, namely that the connected component
of Coll(C) coincides with that of Isom(C).
It would be interesting to know exactly for which convex sets C C V one
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has Coll(C) = Isom(C). The following easy fact shows in particular that this
equality holds in case C is the interior of a convex plane quadrilateral. We
denote by D,, the dihedral group of order 2n.

Proposition 4. Let C be the interior of a convex polygon C with N vertices
in a 2-dimensional plane V.

(i) If N > 4 the groups Coll(C) and Isom(C) are finite.
(ii) If N = 4 the groups Coll(C) and Isom(C) are equal, and isomorphic to

D4-

(iii) If N = 3 the group Coll(C) is isomorphic to the natural semi-direct
product R2 >4 D3, and it is a subgroup of index 2 in Isom(C).

In particular the group Isom(C) acts transitively on C if and only if C is a
triangle.

Proof. For each p E C, let E(p) denote the sphere of radius 1 centered at
p. We denote by V(p) the set of all points x E E(p) such that [p, x] is the
unique geodesic segment between p and x. Proposition 2 shows that V(p) is
also the set of those x E E(p) such that £p,x meets aC at a vertex.
Suppose that N > 4, and let v1, ... , vN be the vertices of C. We denote by
F the finite subset of C consisting of the intersections of two distinct lines
of the form If p E C is not on any of the lines the set V(p) is
the union of the N distinct pairs E(p) fl £p,,,k, so that IE'(p)I = 2N. If P E C
is on exactly one of the lines then IE'(p)I = 2(N - 1). If P E F, then
(E'(p)I < 2(N - 2). Thus F is invariant by the group Isom(C). Moreover,
Isom(C) acts faithfully on the finite set UPEF E'(p), so that Isom(C) is finite.
If N = 4, the set F is reduced to one point, say o, and JE'(o)j = 4. As C
is projectively isomorphic to a square, it is obvious that Isom(C) is equal to
Coll(C), and isomorphic to D4.
The proof of (iii) is in section 2 below.

Proposition 5. Let C be a non empty bounded convex open subset in a
space V of dimension n. Assume that the group Coll(C) acts transitively on
C.

(i) If n = 2, then C is either the interior of an ellipse or an open triangle.
(ii) If n = 3, then C is the interior either of an ellipsoid, or of a cone over

an ellipse, or of a tetrahedron.
(iii) If n = 4, there are six possible cases modulo the group Co11(V) 'Ztl

PGL5(18). Each one has a representative C for which aC is contained
in an algebraic hypersurface with equation

EObl - b2 - b3 - S4 = 0 (C is an open 4-ball)

0(12 - 3 - ta) = 0 (cone based on a 3-ball)

oil 0 (double cone on a 2-disc)

SOS1b2S3b4 = 0 (4-simplex)
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ISOSl - b2 )(S0e3 - b4) = 0 (intersection of two cones)

SO 1 2 - b1S3 - 0 (convex hull of two ellipses whose
planes meet in a single point common to the two ellipses)

where S2 : 43 : 44] are homogeneous coordinates on V.

In the statement of (iii) above, the word cone refers (say in the second case)
to the interior C of the convex hull of v U E, where v is the vertex [1 : 0 : 0
0 : 0] E V and where E is the 3-ball ttwithtboundary given by the equations

1S2 - b3 - c4 - 01

0=0.
The boundary 8C lies in the union of two hypersurfaces, the hyperplane of
equation 4o = 0 and the quadric of equation b1e2 - 3 - q = 0. The latter is
also called a cone by algebraic geometers, but the reader should be aware of
two meanings for the same word.
Proposition 5 answers (for n < 4) a question formulated by H. Busemann
in 1965 [BuO]. In section 6 of [Bu2], under extra smoothness hypothesis on
8C, he showed that a homogeneous C is necessarily an ellipsoid (n arbitrary).
Proposition 5 states part of the results obtained by Larman, Mani and Rogers
[LMR]; as the latter is an unpublished manuscript, we have to rely on [Rog]
which is an exposition of results (without proofs). I shall not discuss the
case n = 5 (see [Rog]), but for mentioning the space Sym which appears in
Remark 3.1 below. I shall no more discuss the relationship between homoge-
neous C's and various subjects (homogeneous cones and formally real Jordan
algebras, works of M. Koecher, E.B. Vinberg and others) but for quoting the
summary in chapter I of [Sat].
In connection with the remark following Proposition 3, I believe that Isom(C)
is transitive on C if and only if Coll(C) is transitive on C.

2. The case of simplices
We consider first the two-dimensional case. Let V be an affine plane lying
inside a projective completion V isomorphic to P2(R), and let S2 be the
interior of a non degenerate triangle in V with vertices a, b, c. We view S2 as
a metric space supplied with its Hilbert metric. If S2 is any other triangle in V
with vertices a', b', c', there exists a projective linear isomorphism g E Coll(V )
which maps S2 (respectively a, b, c) onto S2 (resp. a', b', c'), so that in
particular S2 and S2 are isometric. Consequently, there is no loss of generality
if we identify from now on V with the hyperplane of equation +,q + S = 1
in R3 and if we consider the standard open simplex

S2 (71 I E R 3 : 1;>0, 17>0, (>0, +17+5=1

J
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whose vertices

1 /0\ /0\

a= (0)
0

constitute the canonical basis of
We identify also the group Coll(V) with the quotient PGL3(R) of GL3(R) by

1* * *

its center, the latter being the group R* of homotheties. If I * * * denotes

* * * 1* * *J

the class in PGL3(I8) of a matrix * * * in GL3(R), the subgroup

a 0 0

T2= 0 µ 0

0 0 v

E PGL3(R) : A > 0, µ > 0, v >

of PGL3(]R) acts on S2 by

0 p 0
µ,q +vC µ17

'0

00 0v

1

VC

The action is transitive because

1= 0 0 1/3

0 1 0 1/3 = 7

0 0 C 1/3 C

o)

for each ij E S2. The images in PGL3(R) of the permutation matrices

C _
in GL3(R) constitute a symmetric group a3; this acts on S2 and on S2, and
permutes the vertices a, b, c. It is now straightforward to check that

Coll(S2) = T2 >i a3,

where Coll(S2) is the group defined before Proposition 3 and where ' indi-
cates the natural semi-direct product.
As T2 acts transitively on S2, spheres in S2 are images by elements of T2 of

1/3 \

spheres around the base point po = 1/3 E S2. Let us describe one of these.

1/3
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Consider a point x1 E Qa,po fl S2 distinct from po and let Ex, (po) be the sphere
in S2 of center po which contains x1, as in Figure 5. Set x2 = fc,po nib,,,,. For
any y E [x1, x2], one has d(po, y) = d(po, x1), because po, y and the two points
of £po,y noS2 are on the four lines 1b,po, tb,x,, fb, and £b,a, which do not depend
on y (we apply here once more the projective invariance of the cross-ratio as
in Lemma 6.5.4 of [Ber]). Thus [x1, x2] C E, (po). Similar arguments show
that this sphere is a hexagon with vertices x1i ... , xs as in Figure 5. With
the notations of the proof of Proposition 4, one has EX, (po) = {x1, ... , xs}.

/r1= e2 11=4 11/4 = e2

Figure 5: A sphere (!).

Denote by r = d(po, x1) the radius of Ex, (po). The line fc,x, has the equation
yg = e''. We have indicated in Figure 5 this equation, and more generally
the equations of the lines going through one of the vertices of S2 and one of
the x,'s.
Observe that the isotropy subgroup of the base point po E S2 in the group T2
is reduced to 111, so that the map

T2-+S2, 9''9po,
is a bijection (in other words, the action of T2 on S2 is simply transitive).
Observe also that T2 is naturally isomorphic to the subgroup

A 0 0

T2=

0

µ 0 EGL3(IR) : A>0, y>0, v>0, )µv=1
0 0 v
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of GL3(R). Let us introduce, moreover, the vector space

I
W2={ ER' : 0+0+b=0

and the group isomorphism T2 -+ W2 given by

A 0 0 log A

0 µ 0 H log p
0 0 v log y

The appropriate composition of the maps introduced above and of their in-
verses is a bijection

A2:S2->W2,

given by
2 log - log q - log (

A2 3 -logy+2logq -log( E W2,

-loge -logq+2log(
and with inverse given by

0

0 eB

= 1 e E S2.
eB+eo+ev,

e',

The lines in W2 of equations 0 and 0 = are called the axis of
W2.

Proposition 6. The bijection A2 : S2 -> W2 defined above has the following
properties.

(i) Lines in S2 pointing to one of a, b, c are mapped by A2 onto lines in W2
parallel to one of the axis.

(ii) For each real number r > 0, the lines in S2 of equations e/q = ef'' are
mapped by A2 onto the lines in W2 of equations 0 - 0 = ±r. Similarly
for q/( = et'' and ¢ - 0 = ±r, as well as for (/ = et'' and 0 - 0 = ±r.

(iii) Spheres in S2 are mapped by A2 onto regular hexagons in W2 with sides
parallel to the axis.

(iv) Straight lines in S2 through po are in general not mapped by A2 onto
straight lines in W2.

Proof. This is straightforward, from the formulas for A2 and A21. By "regular
hexagon" in W2, we mean the image by some translation of a hexagon with
the two following properties: firstly its three main diagonals intersect in the
origin 0 E W2, and secondly any of its vertices is the vector sum of the two
nearest vertices.
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Digression on normed spaces

Let U be a real vector space, say finite dimensional here for simplicity. Let B
be an open neighbourhood of the origin in U which is bounded, convex and
symmetric (x E U -x E U). Define a function pB : U --> [0, oo[ by

pB(x)=inf{pER : p>0andxE pB}

(PB is the so-called Minkowski functional for B - see e.g. [KeN]).

Lemma. The function PB is a norm on the vector space U.

Proof. Consider first p, o > 0 and u, v E B. Set
Q

W = u + V.

P+or P + a

Then W E B by convexity, and pu + ov = (p + v)w E (p + v)B. Thus
PB+oB=(p+o)B.
Consider then x, y E U. If p, v > 0 are such that x E pB and y E oB, one
has

x + y E pB+cB= (p+o)B.
It follows that pB(x + y) < pB(x) +PB(y)
The other properties entering the definition of a norm (pB(.x) = JAIpB(x),
and pB(x) = 0 x = 0) are straightforward to check.

In case U is a plane and B is a regular hexagon, we say that the resulting
normed space in a hexagonal plane.
As M.A. Roller has observed, there is an alternative way to describe the
metric in this space: start with a plane U given together with a Euclidean
metric and a hexagon B which is regular in the Euclidean sense (edges of
equal lengths and equal angles); then the hexagonal distance between two
points x, y E U is the shortest Euclidean length of a polygonal line from x
to y with each of its sides parallel to some edge of B. (Similarly, if B was a
square, one would obtain the so-called Manhattan metric on U. All regular
polygons with an even number of vertices provide variations on this theme.)
This ends the digression on normed spaces.

Let again A2 : S2 -* W2 be as in Proposition 6. Denote by B the regular
hexagon in W2 containing 0 and having its six edges on the lines of equations

10-01=1, I0-0I=1, I0-01 =1.

(Observe that these edges are perpendicular to the positive roots

1

0a1= -1 , 02= l 1, al+a2
0 -1 -1

0\ 1
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of the usual root system of type A2 in W2, and compare with the end of the
present section.) Consider W2 as a hexagonal plane for the norm having B
as its unit ball. The following result is both a part of and a complement to
Theorem 1 of [Woj].

Proposition 7. The map A2 : S2 -> W2 is an isometry from the 2-simplex
S2 (with Hilbert's metric) onto the hexagonal plane W2.

Proof. Let x', x" E S2 be such that x' # x". Assume first that the line 41,111
contains a vertex of S2, say c, and let /z = e' be the equation of 4x,,x,,. One
has

x' E S2, ' = e''g', 7)' + C' = 1,

C'
to

x = 7,:: ) E S2, it ='r1/, 1l+,911 +C,,=
1,

d(x', x") = log

Set r' = log(('/rl') and r" = log('"/7)"), so that ds(x', x") = r'- r" (where ds
denotes Hilbert's metric inside S2 and where notations are such that r' > r").

0' \

If A2(x') _ 0' one has

'B'= -r, ,'-0'=r, 0'+q'+&'=0;
thus 2r-r'

A2(x') =
3

-r - r'
-r+2r'

and similarly for A2(x"), so that

1/3

A2(x") - A2(x') = (r' - r") 1/3

-2/3
E W2.

1/3

As 1/3 is in the boundary of the hexagon B, one has

-2/3

dw(A2(x'), A2(x")) = IIA2(x") - A2(x')II = r' - r" = ds(x', x"),
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hj = e2

Figure 6: First step in proof of Proposition 7.

(where dyt. denotes the hexagonal metric on W2) as in Figure 6.
Consider now the generic case of two distinct points x', x" E S2 such that
Qx,,x does not contain any vertex of S2. Assume the notations such that

d(x", 4,x') < min {d(x", d(x", 2c,x,)}.

Choose P E £b,x' such that x', x" are in a sphere E(p) of S2 with center p and
corners xl = x', x2, ... , x6 in cyclic order. Using the genericity assumption
and the previous inequality one may check that x" E ]x3, x4[ U ]x4, XS[-
The image A2(E(p)) is a regular hexagon in W2 that one may obtain from B
by translation and homothety. One checks easily that

d(x', x") = d(x', x4),

and that

IIA2(x ") - A2(x')II = IIA2(x4) - A2(x')II

As d(x', x4) = 11A2(x4) - A2 (X') by the first part of the proof, one has indeed

d(x', x") = IIA2(x") - A2(x')II,

and the proof is complete. (I am most grateful to Pierre Planche for correcting
an earlier incorrect proof of this proposition).
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Figure 7: Second step in proof of Proposition 7.

Corollary. The full isometry group of S2 is isomorphic to the natural semi-
direct product R2 >4 D6, where D6 denotes the dihedral group of order 12.

Proof. This follows from Proposition 7 because an isometry of a real normed
space is necessarily an affine map [maul. 11

Proposition 7 shows in particular that S2 is quasi-isometric to a Euclidean
plane, because two normed real vector spaces of equal finite dimensions are
quasi-isometric.
It implies also the following. Let r denote the isometry x H -x of W2, and
let 7 = A2 1 FA2 be the corresponding isometry of S2.

1/3

Proposition 8. The isometry y of S2 fixes the base point po = 1/3 . If
1/3

t is a line in S2 through po, then 7(1) is a line if and only if f contains one
of the vertices a, b, c of 32. In formulas, ry is the quadratic transformation

1/
1

y S

H
1/

+ 1/q +
1/C

1/(

of S2, which blows up the vertices a, b, c of S2 and blows down the edges ]b, c[,
]c, a[, ]a, b[.
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In particular ry is not in Coll(S2) and does not extend to a continuous trans-
formation of the closed 2-simplex S2.

For quadratic transformations and the related Cremona's transformations, see
for example numbers IV.11 and VI.56 in [Die].

We consider now briefly the case of the n-simplex

Set

Sn = {(S,)1<i<n+1 E II8n+1 : t, > 0 and 1 + + yn+l = 1}.

Wn = {(0i)1<i<n+1 E Rn+1 : 01 +... + 0n+1 = 0},

and define An:Sn ->Wnby

1 dl

An

tt

. _ , where Bi =

Sn+l 0n+1

1

n F 1

The trace on Sn of a linear hyperplane in Rn+1 containing a (n - 1)-face of
3n is mapped by An onto a hyperplane of Wn with an equation of the form
9i - 0 = const for some pair (i,j) of distinct indices in {1,. .. , n + 11.

Let (Ei)l<i<n+l denote the canonical basis of R' 1 Consider in Wn the usual
root system of type An, consisting of the n(n + 1) vectors Ei - e for i, j E
{1, ... , n+ 1} and i # j (see e.g. [Bou]). The images by An of the appropriate
unit ball of Sn is the symmetric convex set

B. = {(0i)1<i<n+1 E Wn : l0i - 0jI < 1 for i # j E {1,..., n + 1}} C Wn.

One may show again that An is an isometry from Sn onto the space Wn
furnished with a norm for which Bn is the unit ball.

0

If n = 3, one replaces W3 by the usual space R3, with coordinates 4 , and
B3 by the convex hull of 14 points which are

f2 0 0

0 , ±2 , 0

0 0 ±2

(6 vertices of degree 4 in the 1-skeleton of B3) and

fl

fl

f1
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(8 vertices of degree 3). The faces of B3 are then quadrilaterals lying in the
12 planes of equations

10±01= 2, 10±01= 2, 10±01 = 2.

The polytope B3 has consequently 14 vertices, 24 edges and 12 faces. (It is
a so-called rhombic dodecahedron, that crystallographs know as the Voronoi
polyhedron of a face-centered cubic lattice; see §18.3 and §22.4 in [Cox].)
The 12 faces of B3 are in affine planes which are perpendicular (with respect
to the canonical Euclidean structure on R3) to the roots of the root system
R = R+ U (-R+) of type A3, where R+ consists of the six positive roots

0 2

a1 = 2 , a2 = -2
2 0

(2) 2

al+a2= 0 , al+a2+ a3= 2

2 0

, C13 = ,

-2

More precisely:

the planes of equations 2 are perpendicular to a1,
the planes of equations 10+01 = 2 are perpendicular to a2,
the planes of equations 10 + 01 = 2 are perpendicular to a3,
the planes of equations 10-01 = 2 are perpendicular to al + a2,
the planes of equations 10-01 = 2 are perpendicular to al + a2 + a3,
the planes of equations 10 + 0 I = 2 are perpendicular to a2 + a3.

The relation between the polytope B,, and the usual root system of type A,,
in W is similar.

3. Remarks and questions

3.1. Let Sym denote the 5-dimensional real affine space of real symmetric
3-by-3 matrices of trace 1. Consider the subset of definite positive matrices

T U

Pos= x= T g p ESym : >0,
a P C

T
I>0, det(x)>0

77

Then Pos is obviously open and convex in Sym. Moreover Pos is bounded;
indeed, with the notations above, one has for any g E Pos

C>0, 77>0, C>0,
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so that 4,q, C E ]0,1 [ (because

p P

P C

> 0,

and

T
> 0,

T ?1

so that p, v,T E ] - 1, 1 [. (For the criterion for positive definiteness in terms
of minors, see e.g. §X.4 in [Gan].) From now on, we consider Pos as a metric
space with the Hilbert metric.
The group G = SL3(R) acts on Pos by

G x Pos --i Pos, (g, x) '-' trace(gxgt) gxgt' (*)

where gt denotes the transpose of a matrix g. Standard facts about the
diagonalization of symmetric matrices show that this action is transitive, and
that the isotropy subgroup in G of the pase point

1 0 0

xo = 3 0 1 0 E Pos

0 0 1

is the orthogonal group

K=SO(3)={gEG:ggt=1}.

Consequently, Pos is a homogeneous space

Pos = G/K,

which can be taken as the simplest case of a non compact Riemannian sym-
metric space of real rank > 1 . (More generally Pos.+1 = SL.+1(1[8)/SO(n+1)
is a Riemannian symmetric space of real rank n ; the fact that positive matri-
ces x E Pos.+1 are normalized here by trace(x) = 1 and in most other places
by det(x) = 1 is not important.)
The closure Pos of Pos in Sym is the space of (not necessarily definite) positive
3-by-3 matrices of trace 1. Thus formula (*) above defines also an action of
G on Pos which preserves cross-ratios. It follows that G is a transitive group
of isometrics for Hilbert's metric. Of course, G is also a transitive group of
isometries for the Riemannian metric (see e.g. [Hel] or [Mos]) which is more
usual in this setting. But the following considerations indicate that it should
be rewarding to study seriously Hilbert's metric on Pos.
Let us identify the open simplex S2 of section 2 with the subset of Pos con-
sisting of diagonal matrices. The restriction to S2 of the Hilbert metric on
Pos coincides with the Hilbert metric on S2 as studied in section 2. The flats
of Pos are precisely the images of S2 by the elements of G. One should be

C+ii+C=1 ),

> 0,

1
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able to caracterize the flats among all ideal 2-simplices of Pos, using Hilbert's
metric on Pos only, and not the action of G. Now it is a fact that a generic
Riemannian geodesic of Pos in S2 through the base point x0 belongs to a
unique flat (which is S2!), and that there are exactly three non generic excep-
tions, defining 6 chambers in the flat S2; these are the chambers entering the
definition of the Furstenberg boundary of Sym. In this way the fine structure
of the Riemannian geodesics is rather subtle. One may hope that Hilbert's
geometry will suggest another way to look at geodesics and another model of
the Furstenberg boundary which will prove useful.

In the study of real hyperbolic spaces, the notion of convexity and the various
kinds of simplices (compact, ideal, regular) play a fundamental role: see e.g.
Gromov's proof of Mostow's rigidity theorem [Mun]. Whereas the classical
Riemannian approach to symmetric spaces makes it difficult to guess how
convexity arguments could be generalized to spaces of real rank > 2, the
Hilbert approach sketched above provides (here for Pos) obvious candidates
for convex subsets in general and for simplices in particular. This suggests
immediately a systematic investigation of simplices in Pos. As a first step,
one could for example try to classify the isometry types of the 2-dimensional
sections of Pos (and more generally of Pos,,+1).
This programme is due to N. A'Campo.

3.2. There are various open questions about Hilbert's metric, even in low
dimensions. Let us mention the following CAT(0)-problem.
Let S2 be the interior of a triangle with vertices a, b, c in R2, let w, x, y be
the three vertices of a triangle inside S2 and let z be a point on [x, y]. If the
configuration is as in Figure 8, it is obvious that d(w, z) = d(w, x) = d(w, y).
(The configuration has been chosen in the Figure in such a way that there is
a unique geodesic segment inside S2 joining each of the pairs (w, x), (x, y),
(y, w).) Thus S2 is far from satisfying the CAT(0)-criterion. (We refer to
[Tro] for an exposition of CAT(0), which holds for Comparison, Alexandrov,
Toponogov and 0-curvature.) Similarly, if C is a neighborhood of S2 such that
C is strictly convex, as in Figure 8, the space C need not satisfy CAT(0). On
the other hand, Hilbert's metric on the interior of an ellipse does satisfy
CAT(0), because it is isometric to the Poincare disc. It would be interesting
to know which are the bounded convex open sets which satisfy CAT(0).

3.3. The definition of Hilbert's metric on a convex subset C of a real vector
space V makes sense even if V is infinite dimensional. The openess and
boundedness conditions on C mean that the intersection of any affine line f
with C has to be an open and bounded segment in 2. For example, consider
the Hilbert space

J
4(N) = {(xn)n>1 : xn E R and E IxnI2 < oo}
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c

Figure 8: On CAT(O).

and the subset

C = {(xn)n>1 E 4R(N) : IxnI < n! for all n > 1}.

Then C satisfies the conditions above, though C does not lie in any bounded
ball of 4(N) in the usual sense. It could be interesting to investigate Hilbert's
metric on such a C.
Of course, there are much more natural examples of C 's which deserve further
study. An obvious candidate is the open unit ball Ail of a C*-algebra A
(say with unit). To end with a brave speculation, one could suggest that
Hilbert's metric on A<1 has something to do with the offspring of the Russo-
Dye Theorem [Gar], [KaP].

Acknowledgements. Much of the above was shown to me a few years ago
by Norbert A'Campo. Since then, it has been the subject of several leisurely
discussions involving among others Albert Fathy, Etienne Ghys and Raffaele
Russo. I am very grateful to them.
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Introduction
The purpose of this note is to give a brief description of some software that has
been developed by the authors (partly in collaboration with David Epstein),
and which was demonstrated by them at the Workshop at the University of
Sussex. It is all written in the C language and designed for use on UNIX sys-
tems. It is available for distribution (via ftp or SUN cartridge) free of charge
from either of the authors, with source code and documentation included,
mainly in the form of UNIX-style manual entries. Input and output is all
done using files in a specially designed format. Usually, the user only needs
to create files containing group presentations prior to running the programs.
There are three principal components of this package, which we shall describe
individually.

1. Automata
This is a sequence of programs that is designed to compute the automatic
structure of a short-lex automatic group. For general information on au-
tomatic groups see [ECHLPT 92], and for a detailed description of the al-
gorithms employed in these programs see [EHR 91]. These programs were
written together with David Epstein.
Let G = (X I R) be a finitely presented group, where X is ordered and closed
under inversion. For each g E G, let w(g) be the lexicographically least (using
the given ordering of X) amongst the shortest words in X that represent g.
Then G is said to be short-lex automatic (with respect to the ordered set X)
if the following hold.
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(i) There is a finite state automaton W called the word-acceptor with input
alphabet X, which accepts precisely the words w(g) for g E G.

(ii) For each x E X, there is a finite state automata M(x) with input alpha-
bet (X U {$}) x (X U {$}), which accepts the pair of words (W1, W2) if
and only if wl and w2 are both accepted by W and w1x and w2 represent
the same element of G. (The extra symbol $ is used only to append on
to the end of the shorter of the two words wl and w2 to make them have
the same lengths.) The automata M(x) are known as the multipliers.

It is important to note that, although the general property of a group being
automatic is independent of the generating set, the property of being short-lex
automatic may depend on both the choice of X and on its ordering.
The input to the programs as supplied by the user is simply a file containing
a finite group presentation, where the ordering of the generators is defined
by the order in which they appear. In principal, if the group is short-lex
automatic with these generators, then, given enough time and space, the
programs will compute the word-acceptor and multipliers, and verify that
they are correct. These are all output to files in our standard format. For
examples requiring more time or space than is available, it can happen that
a word-acceptor is produced, or even a word-acceptor and multipliers, but
without a complete verification. In this case, it is possible but not certain
that they will be correct. In any case W will accept all of the words w(g),
but in case of incorrectness it may accept some additional words.
Some other programs are available that operate on these automata. For
example it is possible to enumerate systematically the accepted words, to
decide whether this set is finite or infinite, and to determine its cardinality
if it is finite. The finiteness and the order of G can therefore be determined,
provided that the verification process has been completed. There is also a
program that will draw a picture of a finite state automaton, as a labelled
graph, in an X-window; the positions of the points and labels can be adjusted
interactively, and a postscript version of the final result can be generated.
Finally, there is a program (written by Uri Zwick in C++) that can compute
the growth-rate polynomial of the group from the word-acceptor.
Currently, the automata package can complete within a reasonable period of
time on various classes of examples. These include Euclidean groups, Cox-
eter groups with up to 4 generators, 2-dimensional surface groups, some 3-
dimensional hyperbolic groups, and some knot groups. We are constantly
attempting to extend its scope to include more examples.
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2. Isomorphism testing

This is a program that attempts to decide whether two given finitely presented
groups are isomorphic or not. A more detailed description can be found in
[HoR 92a]. This problem is of course known to be undecidable in general,
and so any such program is bound to fail on some inputs, but we might
nevertheless hope to achieve success in many cases. The basic idea is to try to
prove isomorphism and non-isomorphism alternately, for increasing periods
of time, hoping to succeed eventually in one of these two aims. It is also
possible, of course, to instruct the program to look only for an isomorphism,
or for a proof of non-isomorphism. The package is arranged as a master
program which calls other programs to perform specific calculations on the
groups. These other programs can also be used individually if required. This
can be advantageous if the user has some idea in advance of which particular
calculations are likely to be the most helpful or decisive. The user has only
to create files containing the two group presentations before starting.
We attempt to prove isomorphism, by running the Knuth-Bendix procedure
on the group presentations (see, for example, [Gil 79]), in order to generate
a word reduction algorithm for words in the generators. In cases of success,
this will enable us to verify that a particular map from one group to the other
is an isomorphism. In order to find this map, we have to use an exhaustive
search, which often becomes rapidly impractical as the word lengths of the
images of the generators under the map increase. We can offset this a little by
using various additional tests, such as checking that the induced map between
the abelian quotients is an isomorphism, or capable of being extended to an
isomorphism when only some of the generator images are known. In addition,
if both groups can be mapped onto a suitable finite permutation group, then
we can check that our map or partial map can induce an automorphism of
the permutation group. In principle, if the two groups are isomorphic, then
this algorithm would eventually find an explicit isomorphism, but in practice
the required time would eventually be prohibitive in many cases.
We attempt to prove non-isomorphism by examining the finite (and abelian-
by-finite) quotients of the two groups, and checking to see if they correspond.
This method was used successfully by Havas and Kovacs to distinguish be-
tween various knot groups (see [HaK 84]). Unlike the isomorphism test, this
approach cannot be guaranteed to work in general, even in principle, since
there are certainly non-isomorphic groups whose finite quotients are the same;
for example, finitely presented infinite simple groups. Furthermore, for rea-
sons of space, it is only possible to look for finite quotients of reasonably
small order, and in the case of finite nonabelian simple images, we have to
look for epimorphisms onto each simple group individually. However, for var-
ious classes of groups that arise naturally from geometry and topology, such
as knot groups and fundamental groups of manifolds, this approach seems to
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be quite successful. Indeed, this is one of the applications that we had in
mind when planning this program. More details of the method for searching
for finite quotients are given in the next section.
This program has been applied successfully to a number of genuine problems
that have been passed on to us. For example, in [Kel 90], a collection of about
30 pairs of link groups is considered, each pair of which came from identical
links with different orientations. All of these are groups with four generators
and up to four relations. Some of these pairs were isomorphic and some not,
and the program was able to decide this in all cases. Two of these cases took
some hours of cpu-time, but all of the others were very quick.

3. Quotpic

This is a graphics package that the authors are currently developing for plot-
ting the finite quotient groups of a given finitely presented group G. A more
detailed description will appear in [HoR 92b]. For the graphics display, an
X-windows server is required, which may be coloured or black and white. The
user must first make a file containing the given presentation of G; thereafter,
all computations are done interactively, by using a mouse to select menu op-
tions. A finite quotient Q = GIN of G is represented in the display by a
vertex, which can be thought of as being labelled by the normal subgroup N.
Given two such vertices M and N such that IGIMI has more prime factors
(counted with repetition) than IGINI, M will always appear lower than N. If
N is joined to M either by an edge, or by a sequence of edges passing through
intermediate vertices, then the inclusion M C N holds. Initially, there will
be a single vertex G corresponding to the trivial quotient; further vertices
are plotted as the corresponding quotients are calculated. The system can
output a postscript file for producing a good hard copy of the lattice that has
been plotted. It operates by calling up other programs to perform individual
calculations; these are more or less the same programs that are used in the
isomorphism testing package for computing finite quotients.
Since all groups G of moderately small order are extensions of a soluble group
N by a group T, where T is either trivial or satisfies S C T C_ Aut(S) with S
a direct product of isomorphic nonabelian simple groups, we have provided
the system with two basic facilities. The first is to find the epimorphisms
from G onto the relevant subgroups of Aut(S), for all appropriate groups S.
This is done interactively by the user, by selecting the group S from a list
on the menu. (The list of groups S can easily be extended if required.) The
second facility can be described as follows. Given a finite quotient G/M of
G of sufficiently small order (a few thousand), find those quotients GIN of
G with N C M and M/N an elementary abelian p-group for some prime p.
We achieve this as follows. First, we use an abelianized Reidemeister-Schreier
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process to compute the largest elementary abelian p-quotient M/M(P) of M
for a particular prime p (which the user can select from the menu). (This
process was first implemented by Havas in [Hav 74].) Then M/M(P) can
be regarded as a K(G/M)-module, where K is the finite field of order p,
and the normal subgroups N that we are seeking correspond precisely to
the K(G/M)-submodules N/M(') of M/M('). In fact there was already in
existence an efficient collection of programs for computing the submodule
lattice of a module over a prime field, based on the well-known `Meataxe'
algorithm of Richard Parker (see [Par 84] and [LMR 92]). This had been
written at Aachen, and we were kindly given permission to incorporate these
programs into our system.
In addition to these basic facilities, we have provided a number of other
options, which experience has suggested are useful in examples which arise
in practice. For example, when G/M is not too large, we can compute
the complete set of abelian invariants of M/ [M, M], and thereby determine
which prime numbers p are relevant. We have also provided a version of the
Canberra p-quotient algorithm (often known as the NQA; see, for example,
[HaN 80]) to compute the quotients of the lower p-central series of M. The
basic lattice operations intersection and join on the vertices (thought of as
normal subgroups of G) are also available; indeed, these operations are used
to ascertain whether or not one vertex is contained in another when this is not
already clear. Although we are not providing sufficient facilities to completely
identify any given quotient up to isomorphism, this is possible in many cases.
As an easy aid to this, it is possible to count the numbers of elements of each
order in a quotient. This is particularly useful if we are trying to distinguish
one group from another. The simplest example is the use of this technique
to distinguish between the dihedral and quaternion groups of order 8.
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The group (2, 3, r; s) is defined by the presentation

(a, b I a2=b3=(ab)' = [a, b]$=1).

The question that interests us is that of deciding which of the groups (2, 3, r; s)
are finite. The aim of this paper is to briefly survey what is known about
these groups and then to highlight the one remaining problem.
To begin with, the groups (2,3,3; s), (2,3,4; s) and (2,3,5; s) are homomor-
phic images of the triangle groups (2,3,3), (2,3,4) and (2,3,5) respectively,
and hence are all finite, and (2, 3, 6; s) is a non-cyclic finite group of order
6s2. The group (2, 3, r; 2) is isomorphic to A4 if r - 3 (mod 6), A4 X C2 if
r - 0 (mod 6), and is trivial otherwise, and the group (2, 3, r; 3) has order

a
r2 if r is even, and is trivial otherwise [Sin36]. So we will assume that r > 7

ands>4.
It was pointed out in [Cox39] that the group (3, 3 I u, s) with presentation

(c,dIc3=d3=(cd)u=(c'd)$=1)
has index 2 in (2, 3, 2u; s), and is thus infinite when (2, 3, 2u; s) is infinite. In
turn, (3, 3 I u, 3v) contains (u, u, u; v) as a subgroup of index 3, so that this
group is also infinite when (2, 3, 2u; 3v) is infinite. Also, (2, 3, r; s) has index 2
in the group G3,r,2s with presentation

(rl,r2,r3 I rl = r2 = r2 = (rlr2)2 = (r2r3)3 = (r3r1)' = (rlr2r3)2s = 1),

so that G3, ,23 is infinite when (2, 3, r; s) is infinite. In particular, since G3,'","
is isomorphic to G3,n,m, (2,3,2k; m) is infinite if and only if (2,3,2m; k) is
infinite.
Now (2,3,7; 4) is isomorphic to PSL(2, 7), (2,3,7;5) is trivial, while (2,3,7; 6)
is isomorphic to PSL(2,13) [Bra28], as is (2,3,7;7) [Sin35]. The group
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(2,3,8; 4) is isomorphic to PGL(2, 7) [Cox39], while (2,3,8; 5) and (2,3, 10; 4)
have a central subgroup of order 3 with factor group A6 extended by an outer
automorphism of S6 [Cox39], and (2,3,8;6) is infinite [Bra3l]. The group
(2, 3, 9; 4) is isomorphic to A4 [Cox39] and (2, 3, 9; 5) was thought to be cyclic
of order 3 (though we will see in a moment that this is incorrect). The group
(2,3, 11; 4) is isomorphic to PSL(2,23) [Cox39].
It was shown in [Cox57] that, if m and n are both even, then

1G3,m,n finite 4 cos (4m) + cos (4n) < 2 (*)

and so, for even r, (2, 3, r; s) is infinite if and only if cos (4") + cos (2e) < a
Leech and Mennicke [LeM61] showed that (2,3,7; 8) is an extension of an
elementary abelian group of order 26 by PSL(2, 7); see also [Cox62]. (2,3,9; 5)
was shown to be a direct product of C3 with PSL(2,19) [Sin69] (as opposed
to being a cyclic group). On the other hand, Sims [Sim64] and Leech [Lee66]
showed that (2, 3, 7; 9) is infinite; see also [Hig], where it is also shown that
(2,3,7; 10) is infinite, and some further results may be found there and in
[GrM91]. The following result was proved in [HoT90], [HoT]:

Theorem A. Let r and s be integers satisfying one of the following condi-
tions:

(i)s=4 andr>15; (ii)s=5 andr>10; (iii)s>6 andr>9;
(iv)s>8 andr>8; (v)s> 12 andr>7.

Then the group (2, 3, r; s) is infinite.

An independent proof for r = 7 and s > 12 may be found in [HoP], and the
group (2,3,7; 11) has now been shown to be infinite also by Martin Edjvet
[Edj]. So Theorem A, together with the results mentioned above, yields:

Theorem B. With the possible exception of (r, s) = (13, 4), the group
(2, 3, r; s) is infinite if and only if r and s satisfy one of the following condi-
tions:

(i)r=7, s>9; (ii)r=8or9,s>6; (iii)r=10orll,s>5;
(iv) r > 12, s > 4.

Theorem B shows that, if n is even, then (*) is necessary and sufficient for
arbitrary m with the possible exception of m = 13, n = 8. While we do not
know whether or not (2, 3, 13; 4) is infinite, it was shown in [Sin37] that the
homomorphic image of (2, 3, 13; 4) defined by the presentation

(a, b I a2 = b3 = (ab) 13 = [a, b]4 = w(a, b) = 1)

is isomorphic to PSL(3, 3), where, if d and e are defined to be ab-1 and babab

(so that d13 = e4 = 1), then w(a, b) is the word ed7ed7e2d-7e2d7. The homo-

morphism from (2,3,13; 4) onto PSL(3, 3) gives a permutation representation
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of (2,3,13; 4) of degree 13, which may be realized as follows:

a - (2,3)(4,13)(5,11)(7,10),
b --> (1, 2, 4) (5, 12, 13) (6, 7, 11) (8, 9, 10),

ab -> (1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13),

[a, b] - a (1, 5, 8,11)(2, 4, 13, 3)(6,12)(7,10).

We then have that ab-1 abab --> (2,5,9,10,8,12,7,11)(l,6,13,4), so that the
relation (ab-labab)8 = 1 also holds in PSL(3, 3); we shall see in a moment
that this extra relation, together with those defining (2,3,13;4), are enough
to define PSL(3,3).
Clearly any finite homomorphic image of (2,3,13; 4) must be perfect. Holt
has checked, using a computer, that the only finite simple groups of order
less than 106 that are homomorphic images of (2,3,13;4) are PSL(3, 3)
and PSL(2, 25), and that (2,3,13;4) also has as a homomorphic image a
group E which is an extension of an elementary abelian group of order 212 by
PSL(3, 3), so that (2,3,13; 4) has homomorphic image E x PSL(2, 25). Fur-
ther to this, George Havas and Edmund Robertson have determined, again
using a computer, that the presentations

(a, b a2 = b3 = (ab)13 = [a, b]4 = (ab-labab)8 = 1),
(a, b a2 = b3 = (ab)13 = [a, b]4 = (ab-labab)16 = 1),

(a, b a2 = b3 = (ab)13 = [a, b]4 = (ab-labab)13 = 1).

determine PSL(3,3) (as we mentioned above), E and PSL(2,25) respec-
tively. Here we will verify Holt's result, and extend it slightly, by proving:

Theorem C. There is no non-trivial homomorphism of (2,3,13; 4) into
GL(2, F) for any field F. If 0 is a non-trivial homomorphism of (2,3,13; 4)
into PGL(2, F) for some field F, then F has characteristic 5 and the image
of 0 is isomorphic to PSL(2,25).

With regards to the simple groups of order less that 106, note that, since
(2,3,13;2) is trivial, the images of a, b, ab and [a, b] in any non-trivial ho-
momorphic image of (2, 3, 13; 4) must have orders 2, 3, 13 and 4 respectively.
Since the image of ab-lab has order 4, the images of a and b-lab must gen-
erate a dihedral group of order 8. So we are only interested in finite simple
groups of order less than 106 whose orders are divisible by 8.3.13 = 312; this
leaves the following possibilities:

PSL(3, 3); PSL(2, 25); PSU(3, 4); PSL(2, 79); PSL(2, 64); PSL(2,103).

Of these, we can immediately rule out PSU(3, 4), as a Sylow 2-subgroup only
contains three involutions, and hence cannot contain a dihedral subgroup of
order 8. Since we already know that PSL(3, 3) is a homomorphic image of
(2, 3, 13; 4), the rest will follow from Theorem C.
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We start by recalling some basic facts about GL(2, F) that will be useful.
Consider GL(2, F) acting on a vector space V of dimension 2 over F. If R
is any element in GL(2, F) which is not a scalar multiple of the identity I,
u is any non-zero vector which is not an eigenvector of R and v := Ru, then

0 1\
B :_ {u, v} is a basis for V and R acts as I\ /I with respect to B. If

(s
t 0 1

R has determinant 1, then s = -1, so that R is conjugate to (_1
t

in GL(2, F). Since conjugate matrices have the same trace, the matrices
0 1

form a complete set of representatives for the distinct conjugacy
-1 t

classes of non-scalar matrices of determinant 1 in GL(2, F); a consequence is
that -I is the only element of order 2 in SL(2, F). Since I and -I are the
only scalar matrices in SL(2, F), the order of any matrix of trace other than
±2 is uniquely determined by its trace; if we are working in PSL(2, F), this
still holds, subject to the fact that the trace of a matrix is now only defined
up to multiples of ±1, since M and -M are equal in PSL(2, F).
With regards to the proof of Theorem C, it is clear that, if 0 is any homomor-
phism of (2,3,13; 4) into GL(2, F) (or PGL(2, F)), then the image of 0 is per-
fect, and so all matrices in the image of 0 have determinant 1 (or ±1 in the case
of PGL(2, F)); so we have a homomorphism from (2,3,13; 4) into SL(2, F)
or PSL(2, F). We cannot have a non-trivial homomorphism into SL(2, F),
since -I is the only element of order 2 in SL(2, F); therefore let us consider
elements A and B of PSL(2, F) such that A2 = B3 = (AB)13 = [A, B]4 = 1.
Considering A as an element of SL(2, F), we have that A2 = -I, and, re-

0 1

placing A by a conjugate if necessary, we may take A to be Since
1 0

any matrix of order three in PSL(2, F) has trace ±1, B must be of the form
a #

(1Y
(replacing B by -B if necessary), where a - a2 1. Let1 -a

T := - ry; then

AB = (
/ ry a-1

and A-1B-'AB =
a2+ry2 ar+ry

I I ,

a Q (ar/+7 (a. , Q2/

so that C := AB has trace r and D := A-1B-'AB has trace 2a2 - 2a + 1 +
#2+ry2=T2-1.
We may readily check that, if w is the trace of an element of order 4 in
PSL(2, F), then w2 = 2; so, if D4 = 1, we must have that T2 = w + 1.
Now, in SL(2, F), Tr (UV) = Tr (U)Tr (V) - Tr (U-1V ), and so, putting
U = C and V = C', we get that Tr (Cm) = rTr (Cm-1) - Tr (Cm-2).

This gives that C2 has trace r2 - 2 = w - 1, C3 has trace T(w - 2), C4
has trace 1 - 2w, etc., and we may continue this to deduce that C13 has
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trace r(47 - 34w) in SL(2, F). So, if C has order 13 in PSL(2, F), we must
have that r(47 - 34w) = ±2, so that r2(47 - 34w)2 = 4, which gives that
1325w = 1875; so F has characteristic p > 0. If p # 5, we have 53w = 75,
and squaring both sides yields that 5618 = 5625, so that p = 7.
If p = 5, then r = ±(w - 2), and we may check that C13 = -I. On the other
hand, if p = 7, then w = 3 or -3, and then C13 has trace r(5 + w) = r or 2T
respectively. So T = ±2 or r = f1, so that T2 = 4 or 1, and, since T2 = w+1,

0 1

we must have r = ±2, w = 3. But now AB is conjugate to I I, an-1 ±2
element of PSL(2, 7), contradicting the fact that PSL(2, 7) has no element
of order 13; thus p = 5. Since D has trace w, and hence order 4, we now have
a homomorphic image of (2,3,13; 4).
With A and B as above (and F of characteristic 5), we have that A2 = B3 =
-I in SL(2, F). Since

Tr (AB-1C2) = Tr (AB-1)Tr (CZ) - Tr (BA-1C2),

and

Tr (C2) = w - 1,

Tr (AB-1) = Tr (BA-1) = -Tr (BA) = -Tr (C) = -T = ::F(w - 2),
Tr (BA-1C2) = Tr (B2AB) = Tr (AB3) = -Tr (A) = 0,

we have that

Tr (AB-1C2) = ::F (w - 2)(w - 1) = ±(1 - 2w) = ±Tr (C4).

Since C4 has order 13 in PSL(2, F), we have that (AB-1C2)13 = ±I, and we
have the relations

A2 = B3 = (AB) 13 = [A, B]4 = (AB-'ABAB)13 = 1,

which is a complete set of defining relations for PSL(2, 25) by the above. So
< A, B > is isomorphic to PSL(2, 25), and we have completed the proof of
Theorem C.

Acknowledgement. The second author would like to thank Hilary Craig for
all her help and encouragement.
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Some Applications of Small Cancellation Theory to
One-Relator Groups and One-Relator Products

Arye Juhasz

Department of Mathematics, Technion-Israel Institute of Technology, 32000 Haifa, Israel.

Introduction

It was believed for some time that most of the one-relator groups would be
small cancellation groups. In this talk I would like to confirm this by show-
ing that, with the exception of a small class of one-relator groups, they are
small cancellation groups, and the groups in the exceptional class are small
cancellation in a generalized sense, with one exception, where they are only
small cancellation groups relative to a subgroup. These results are sufficient
in order to regard one-relator groups as if they were small cancellation groups.
In particular, we get a solution for the conjugacy problem for all one-relator
groups. More precisely, it is shown that Schupp's solution to groups satisfying
one of the geometrical small cancellation conditions [5] applies to one-relator
groups with one exceptional class, where it is possible to reduce it to a com-
binatorial problem which cannot be solved by small cancellation theory but
can be solved by a very simple combinatorial consideration [4].

1. The non-small cancellation groups

Let P = (X I R) be a one-relator presentation, R cyclically reduced. If P
satisfies the condition C(6) then it is, by definition, small cancellation. So we
shall assume that

P does not satisfy the condition C(6).

This means that there is a connected, simply connected, reduced in the sense
of Lyndon, Schupp [5] diagram M over R. (the symmetrical closure of R)
which contains an inner region with less than six neighbours (i.e. a polygon
with less than six edges). For every presentation P denote by m(P) the
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minimal number of neighbours which an inner region may have:

m(P) = min I {d(D) I D E Inreg (M)}1.
MEM

133

Here M stands for the set of all the connected and simply connected diagrams
over R, D is a region with d(D) edges and Inreg (M) stands for the set of all
the inner regions of M.
We have to deal with the following four cases:

1. m(P) = 2, 3. m(P) = 4,
2. m(P) = 3, 4. m(P) = 5.

Clearly the groups occurring in cases 2, 3 and 4 still may be small cancellation
groups if the vertices of the corresponding regions have high enough valency.
However, at the moment from our point of view the important thing is that
all the non-small cancellation groups are covered by these cases.
Let us consider them more closely. If an inner region has m neighbours, then
one of the cyclic conjugates of R, say R itself, can be decomposed as the
product of m subwords P1,. .. , P,,,, in such a way that either the words Pi
or their inverses are subwords of the relators which are represented by the
neighbouring regions. Since we have only one relator, the boundary label of
every region is a cyclic conjugate of R or of R-1. Consequently R = Pl ... P,,,
and each Pi satisfies one of the following equations:

1U;PiVi=R, P'=P`', Ei=±1,
(*) Ui 54 P1... Pf_1, (Po = 1),

P,'=H.Ti, T,U,H1=R, P,'=Pi, Hi#10Ti, i=1,...,m.

The solutions to these equations give all the words which are suspected of
giving rise to a non small-cancellation group. Thus, if there would exist
something like "algebraic geometry over free groups" then the set of small
cancellation groups would contain an "open subset" in the corresponding
"Zariski Topology". This would give some confirmation to the feeling that
most of the one-relator groups are small cancellation groups.

2. The extended small cancellation theory

We now develop the necessary extension of small cancellation theory which
enables us to deal with these groups. All solutions of (*) which classify the
non-small cancellation cases, can be expressed as words in subwords of R
on X. We explain the main ideas through the following example. Assume
m = 2, P1 = A, P2 = B, JAI > JBI; then one of the solutions to the equations
is A = (ST)"S, a > 1, B = TS, R = (ST)"+1S, where S and T are
arbitrary words on X such that (ST)"+1S is cyclically reduced. To simplify
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this discussion we shall assume a = 1; thus A = STS, B = TS, U1 = ST,
V1 = 1 U2 = S, V2 = TS and R = ST ST S. We shall call these three
occurrences of S and these two occurrences of T their standard occurrences
in R. Let M be a fixed simply connected R-diagram. In order to avoid inner
regions with two neighbours, we construct a new presentation out of the given
one by adding further relations in the following way: Consider R as a word
in the subgroup (S, T) = H. The relations we add are all the words in the
normal closure of (R) in H and we regard these relations as the relators in
our new presentation. Geometrically this is carried out as follows: say that
two regions are H-adjacent if the label of their common edge is a product
of standard occurrences of S and T (or their inverses), regarding a single
occurrence of S}1 or T}1 as a product. Call the regions Do, Dt H-linked
if there is a sequence of regions Dl,..., Dt_1 such that Di and Dt}1 are H-
adjacent for i = 0,. .. , t - 1. H-linkedness is an equivalence relation which
we shall denote by H. Next, for each D E Reg (M) define EH(D) to be the
H-class of D and denote by AH(D) = Int(U E) where E E EH(D) and Int(X)
is the interior of X.
Assume that the following hypothesis holds:

(l) For every D E Reg (M), AH(D) is simply connected.

(It is proved by induction at the end of the construction that in fact (f)
holds (see [6])).
Under (11) we may consider £H(D) as regions for the presentation (X I RH)
and we get a diagram over (R)' with boundary aM. We shall call this
diagram the derived diagram of M with respect to H, and denote it by MH.
This whole construction is a very much simplified version of a construction
due to E. Rips [6].
We shall call AH(D) a derived region of M with respect to H and denote the
set of all the derived regions by RegH(M).
Let us consider more closely the derived diagram MH. If Al, A2 E RegH(M),
then a01nOA2 cannot be labeled by standard occurrences of S or T. Hence, if
all the occurrences of Stl and ±1 T in the cyclic conjugates of R are standard,
then la 1 n ao2) < ISTI. If, in addition, we assume that

(A) ST and TS are the product of at least four pieces, relative to the sym-
metric closure of ST,

then A has at least six neighbours. Hence in this case MH satisfies the
condition C(6) (in spite of the fact that the original presentation does not
satisfy even C(3)). In this situation we say that P is a small cancellation
presentation with respect to H. This very much resembles Gromov's Relative
Hyperbolicity (§8.6, p. 256 in [2], Example (b) in particular.) In order to
make this construction applicable we still have to consider the case when the
whole diagram MH consists of a single region A. In this case, of course,
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relative small cancellation does not help. But in our example, as a simply
connected diagram over R, A turns out to be a diagram without inner regions;
therefore by definition it is small-cancellation. This is not a surprise, for H,
the image of H in the group defined by P, turns out to be isomorphic to
(x) y I xyxyx), which is isomorphic to Z, and Z is hyperbolic. Having these
two results, namely, that P is small cancellation relative to H and H is
small cancellation, we may regard MH as a small cancellation diagram. In
particular we can solve the conjugacy problem by P. Schupp's method [5].

3. Solution of the conjugacy problem

First we recall Schupp's method very briefly in a way suited to our pur-
pose. Let u and v be cyclically reduced words. Define c'(u) _ {uh I Phi <
JRI, Juhl < JuJ}. For k > 2 define inductively

ck(u) = U c1(x).

xEck-1(u)

Let c(u) = Uk 1 ck(u) and define c(v) similarly. Clearly c(u) and c(v) are
finite sets, and if ck+1(u) = ck(u) then ck+t(u) = ck(u), for every t _> 1.

Consequently the sets c(u) and c(v) can be found recursively. If P is a small
cancellatin presentation, then u is conjugate to v if and only if c(u)nc(v) 0 0.
Now we turn to our example. Let A be an annular diagram over R with
boundaries labeled by u and v and let A' be its derived diagram as constructed
above. It satisfies the condition C(6) in terms of the derived regions. Hence
Schupp's method will apply if the following condition are satisfied:

(a) There is a closed simple path 71 in A', homotopic to each of the bound-
ary components of aA' such that the regions A between y and OA' are
arranged in layers having a non-decreasing number of regions toward the
boundaries.

(b) For every such annular layer L and region A in L, CAL n OAI is bounded
by kiR1 for a constant k depending only on R.

(c) There exist adjacent regions A, and A2 in L with l8i 2 n 19/.2I < JR1.

(d) H has solvable conjugacy problem.

If we choose u and v to be Dehn-reduced words over R (which we certainly
can), then it follows from the theory of W(6)-diagrams that (a) and (b) are
satisfied [2]. Moreover, it follows from assumption f that (c) holds. Clearly H
has a solvable conjugacy problem. Consequently, the following modification
of Schupp's procedure applies to our group if we require u and v to be Dehn-
reduced.
Check whether c(u)nc(v) # 0. If it is not empty, then certainly u is conjugate
to v. If it is empty then check whether C(u) contains an element u of H and
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c(v) contains an element v of H such that u and v are conjugate in H. If
there are such elements then u and v are conjugate. If no such elements exist,
then they are not conjugate.
One advantage of this solution is that if P is small cancellation with respect to
H and H has a solvable conjugacy problem, then P has a solvable conjugacy
problem. In particular, if H is very bad from the small cancellation theoret-
ical point of view (i.e. it has a non-polynomial isoperimetric inequality) but
still has a solvable conjugacy problem due to some combinatorial or group
theoretical reasons, then P has a solvable conjugacy problem. In the family
of one relator groups, such a phenomenon occurs in the class of Baumslag-
Solitar type groups K = (X I AB"A-1B-1, a # /l). Thus, in spite of the
fact that K has a very bad isoperimetric inequality (see [1]), K still has a
solvable conjugacy problem since K turns out to be small cancellation with
respect to (A, B) and (x, y I xy"x-1y-a) has a solvable conjugacy problem
due to a completely different combinatorial reason (see [4]). In other words,
in these groups the "bad" regions occur in "aggregates" (the derived regions)
in such a way that the common boundary of any two such aggregates is a
very short (or empty) path.
Let us come back to our assumption (A). If it is not satisfied, then we get new
equations of a type similar to (*) and their solution gives finer information on
the structure of S and T. This implies that in the new derived diagram with
respect to the subgroup generated by these finer pieces (i.e. shorter subwords),
the common boundary of two-derived regions will be shorter. Thus iterating
this procedure several times (< 3) we finally get a derived diagram for which
the condition C(6) holds. A more delicate analysis will lead to a complete
classification of all words which give rise to one relator groups which are
semi-hyperbolic but not hyperbolic. More precisely, this leads to a computer
program which, for a given cyclically reduced word, will give one of the three
outputs: hyperbolic, semi-hyperbolic, else. This work is in progress.

4. One relator products

Let us turn to one-relator products. This is also a work in progress and I shall
be very brief. The method described above applies to one-relator products.
The difficulty is that in the one-relator product, the equations obtained have
many more solutions than in the one-relator case. This is due to the fact
that a word over a free product may overlap with its inverse. Hopefully, this
method will give a finite list of words for which the one-relator products are
not small cancellation and, by applying the theory of derived diagrams, this
list will reduce to a small class of groups defined by generators and relators
in terms of the generators in an explicit way (i.e. not just by general words).
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A Group Theoretic Proof of the Torus Theorem
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1. Introduction

The Torus Theorem was discovered by Waldhausen and subsequently sev-
eral authors, including Jaco, Shalen, Johannson and Scott gave proofs of
various forms of the Theorem. In its most general form, it identifies a charac-
teristic submanifold within a compact 3-manifold, and provides a canonical
decomposition of the 3-manifold into pieces which, according to Thurston's
Geometrization Conjecture, admit a geometric structure based on one of eight
3-dimensional geometries. Although Thurston's Conjecture is not at present
completely proved, much of it has been proved and it has therefore been
clear for several years that the Torus Theorem and its generalizations are of
fundamental importance.
The early approaches to proving the Torus Theorem involved quite intricate
geometric or topological arguments. Of these, Scott's account [22] and [24] is
amongst the most easily digestible and indicates that much of the Theorem
depends solely on properties of the fundamental group.
Nowadays any approach to studying a compact 3-manifold M begins by as-
suming that M is endowed with either a PL or with a smooth structure. It
is known that every topological 3-manifold admits both a unique PL and a
unique smooth structure, and we shall make no further comment on this part
of the theory. A modern approach to the Torus Theorem can begin in one of
two ways. Working with the smooth structure, Casson now has a very elegant
geometric proof which uses least area surface methods developed by Scott.
On the other hand, as we shall demonstrate in this article, one can also work
almost entirely with the fundamental group. From this second point of view
it is natural to think in terms of the PL structure.
For the sake of simplicity we shall address the following special case of the
Torus Theorem:
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The Torus Theorem. Let M be a closed orientable aspherical 3-manifold.
Suppose that the fundamental group irl (M) has a rank 2 free abelian subgroup.
Then one of the following holds:
(i) M admits a 2-sided embedded incompressible torus; or

(ii) irl(M) has an infinite cyclic normal subgroup.

The link with group theory depends on the general fact that if M is a closed
orientable aspherical n-manifold then G = al(M) satisfies Poincare duality:
that is, for any G-module V and any integer i there are isomorphisms

H`(G,V) = Hn_;(G,V). (1.1)

A group G which satisfies (1.1) is called an orientable n-dimensional Poincare
duality group. The Torus Theorem has a formulation for non-orientable 3-
manifolds and a general definition can be given for Poincare duality groups
which includes the non-orientable case. The main goal of this paper is to
prove the following result, from which it is fairly straightforward to deduce
the Torus Theorem as stated above. In the statement we write X for the
class of groups H of cohomological dimension 2 which have an infinite cyclic
subgroup which is commensurable with all of its conjugates.

Theorem 1.2. Let G be a 3-dimensional Poincare duality group. If G has
a rank 2 free abelian subgroup then one of the following holds:
(i) G is a non-trivial free product with amalgamation; G = K *H L, where

H belongs to X; or
(ii) G is an HNN-extension, G = B*H,t, where H belongs to X; or

(iii) G has an infinite cyclic normal
subgroup.

Layout of the paper

Section 2. Deduction of the Torus Theorem from Theorem 1.2

The deduction depends on a simple and classical tranversality argument, to-
gether with an understanding of groups in the class X.

Section 3. Poincare duality groups

Here we include some background material on Poincare duality groups.

Section 4. Ends of pairs of groups

Two end invariants e and a are defined for a pair of groups H <, G, and some
splitting theorems for groups are proved. The methods ultimately depend on
the ideas of Stallings and Dunwoody concerning bipolar structures and group
actions on trees which were first used in the study of groups of cohomological
dimension one.
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Section 5. The proof of Theorem 1.2

Once underway, this proof is quite technical. This should not be surprising
because the theorem is very close to the Torus Theorem and one must expect
it to address similar issues, although from a group theoretic point of view.
There are two fundamental reasons why the Torus Theorem is a hard theorem.
One might like to regard the Torus Theorem as the statement that when the
manifold has an incompressible immersed Torus then it has an incompressible
embedded torus: this presents the first reason to expect problems for there
are counterexamples, first identified by Waldhausen, amongst closed Seifert
fibered manifolds. This is why the Torus Theorem has the exclusion clause in
case G has an infinite cyclic normal subgroup. (By the way, it is now known
that closed irreducible 3-manifolds whose fundamental groups have an infinite
cyclic normal subgroup are Seifert fibered. The analagous question about
PD3-groups is at present completely unsolved.) Secondly, even when one can
find an embedded torus, it certainly need not be possible to find one which
is freely homotopic to the original torus. Geometrically one expects surgery
techniques to help to build the embedded torus by studying the immersed
torus. Group theoretically we do not have a surgery technique and broadly
speaking, what one has to do is as follows. Let H be a rank 2 free abelian
subgroup of a PD3-group G. If G does not split as an amalgamation or
HNN-extension over any subgroup commensurable with H then one finds
that there is an infinite cyclic subgroup K of H with very large normalizer.
For technical reasons we have to work with the commensurator C of K rather
than its normalizer, but this is similar in spirit. This new subgroup C contains
an abundance of free abelian groups of rank 2 and the aim is to obtain a
splitting of G over one of these, or failing that, at least over some subgroup of
C. Thus in outline, the group theory mirrors exactly what happens inside a
Haken 3-manifold. The original immersed torus (with fundamental group H)
is freely homotopic to an immersion into some component (with fundamental
group C) of the characteristic submanifold. The boundary components of
this component will be tori or Klein bottles which are incompressible and
embedded.

2. Deduction of the Torus Theorem from Theorem 1.2

The principal result we need, which relates 3-manifold theory to group theory,
goes back to Stallings and Waldhausen. It is also an ingredient in Scott's work
[22] and can be stated as follows:

Theorem 2.1. Let M be a closed aspherical 3-manifold whose fundamental
group G is either a non-trivial free product with amalgamation, G = K *H L,
or an HNN-extension, G = K*H,t, over a subgroup H. Then M admits an



The Torus Theorem 141

incompressible 2-sided aspherical surface S and the induced map al(S)
irl(M) carries irl(S) into a subgroup of a conjugate of H.

Proof. The following argument is due to Dunwoody: it is similar in spirit
to the proof of theorem VI.4.4 of [4]. We suppose that there is a given
PL-triangulation of M. Let M denote the universal cover of M. The given
decomposition of G as amalgamation or HNN-extension is provides an action
of G on a tree T with one orbit of edges and 2 or 1 orbits of vertices, and such
that H is the stabilizer of an edge, e, say. Thus we have two G-spaces M and
T, and G acts freely on M. Now one can choose a transverse G-map ¢ from
M to T starting from any G-map between the 0-cells. Let x be the midpoint
of some edge of T. Then 4-1(x) is a sub-2-manifold of k and moreover,
the stabilizer of any component of q-1(x) is contained in H. Passing to the
quotient M, we can choose a component of the image of q-1(x) which yield
a non-trivial decomposition of M. Let X denote this component. Then the
induced map irl(X) -* irl(M) carries al(X) into H, but it might not be
injective; that is, X might not be incompressible in M. The Loop Theorem
shows that if X is not incompressible then there is an essential loop C in
X which is contractible in M, and there is a disc in M spanning this loop.
Now one can do surgery along this disc to reduce the genus of X: if C is
non-separating in X then surgery yields a new X of smaller genus at once,
and if C separates X then surgery divides X into two components, both of
smaller genus, and one can choose one of these so that it still gives a non-
trivial decomposition of M. Since every sphere in M bounds a ball (M being
aspherical) one can adjust the original map 0 so that q-1(x) actually realizes
this new surface of smaller genus and in this way we can reduce to the case
when X is incompressible, so proving the Theorem.

The need for the Loop Theorem in this proof makes it a non-trivial result.
Moreover, as the Theorem is usually stated for irreducible 3-manifolds, rather
than aspherical, one normally also applies the Sphere Theorem to guarantee
that every 2-sphere in M bounds a ball. For these reasons, Theorem 2.1 is the
main part of our proof of the Torus Theorem which appeals to some genuine
3-manifold theory and so it is interesting to note that Stallings work on ends
and almost invariant sets, which we generalize here for our later arguments,
was originally designed to provide a more algebraic proof of the Loop and
Sphere Theorems.
Taking Theorems 1.2 and 2.1 together all that remains in proving the Torus
Theorem as stated above is to check that the incompressible surface obtained
is a torus. One knows that its fundamental group is a subgroup of an X-group,
and the result follows from the following structure theorem established in [16].

Theorem 2.2. Let H be a non-trivial finitely generated X-group. Then H
is the fundamental group of a finite graph of groups in which all the vertex
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and edge groups are infinite cyclic.

It is a consequence of this theorem that the only closed aspherical surface
groups which can be subgroups of i-groups are the Torus group and the
Klein bottle group. We can exclude the Klein bottle on grounds of its non-
orientability.

3. Poincare duality groups

An n-dimensional Poincare duality group, or PD"-group, is a group of type
(FP) which has cohomological dimension n and such that H'(G, ZG) = 0
for i < n and H"(G, ZG) Z. Since ZG can be regarded as a bimodule,
the cohomology group H"(G,7GG) inherits an action of G. We say that G
is orientable if G acts trivially on H"(G, ZG) and non-orientable otherwise.
Let us write D for this cohomology group together with its natural action of
G: it is called the dualising module of G and one has the following duality
between the cohomology and homology of G:

H'(G,V) = H"_;(G,V ® D), (3.1)

for any G-module V. In fact (3.1) is equivalent to the definition we have given
for a Poincare duality group: for further information we refer the reader to
Bieri's book [1].
All known examples of Poincare duality groups are fundamental groups of
closed aspherical manifolds. If M is a closed manifold then one has classical
Poincare duality between the singular homology and cohomology of M, and
this duality holds for any coefficient system, trivial or twisted. If M is also
aspherical then it is an Eilenberg-Mac Lane space for its fundamental group
G = ir,(M). Thus G inherits the Poincare duality from M. This shows
that fundamental groups of closed aspherical manifolds are Poincare dual-
ity groups: moreover they are orientable or non-orientable according as the
manifold is orientable or non-orientable. It is a deep and difficult question
whether the converse holds. It is fairly easy to prove that a PD'-group is
necessarily infinite cyclic and it is a deep theorem of Eckmann, Bieri, Muller
and Linnell that PD2-groups are surface groups. The results described in
this article might be regarded as the first tentative steps towards proving
that every PD'-group is a 3-manifold group.
All Poincare duality groups are torsion-free. The three most important
sources of examples are torsion-free polycyclic-by-finite groups, torsion-free
cocompact lattices in semisimple Lie groups [2], and torsion-free subgroups
of finite index in certain Coxeter groups [3]. We shall have more to say of
Davis' examples [3] shortly.
It is easy to show that every subgroup of finite index in a PD"-group is
again a PD"-group and that one can obtain the dualising module of the
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subgroup simply by restricting the action of the whole group. Since the
dualising module D of a PD-group G is additively isomorphic to Z, either
G acts trivially on it or G has a subgroup of index 2 which acts trivially. In
particular, every non-orientable PD'-group has a unique orientable subgroup
of index 2.
Subgroups of finite index are thus very well behaved. What can be said of
infinite index subgroups? There is one general fact, proved by Strebel [27],
which plays a fundamental role:

Theorem 3.2. Every subgroup of infinite index in a PD'-group has coho-
mological dimension strictly less than n.

For example, every subgroup of infinite index in a PD2-group has cohomo-
logical dimension < 1 and so is free by the Stallings-Swan Theorem [26] and
[28].

Aside from Theorem 3.2 there are few restrictions known on the possible
subgroups of Poincare duality groups. For example, the situation is much
less well understood for PD3-groups than for 3-manifold groups. It is known
that neither a PD3-group nor a 3-manifold group can contain a direct product
of two non-cyclic free groups but in the PD3-group case this is an isolated
result, proved in [12], whereas for 3-manifolds it is a consequence of Scott's
compact submanifold theorem [20].
Recently, in a short note [17], Mess has pointed out a reasonably general
way of embedding groups as subgroups of Poincare duality groups, based on
Davis' construction [3] with Coxeter groups. We outline briefly what Mess
proves:

Theorem 3.3. If G is the fundamental group of a compact aspherical tri-
angulated n-manifold M then G can be embedded into a PD" -group.

Outline of proof. This is proved by starting from a sufficiently fine tri-
angulation of the boundary of M (the barycentric subdivision of the given
triangulation is good enough), and then placing a panel structure on the
boundary with one panel for each vertex of the triangulation and with two
panels intersecting when the corresponding vertices are joined by an edge of
the triangulation. The panel structure is dual to the triangulation, and one
imagines the panels being mirrors so that if one stands within the manifold
one sees many reflections in the different panels yielding a development of
the manifold to a much larger open manifold on which a reflection group is
acting. More formally, one defines a Coxeter group with one generating re-
flection for each vertex of the boundary of M and subject to the relations
that two vertices commute if and only if they are joined by an edge, or equiv-
alently if and only if the corresponding panels meet. The development of
M, which is again a manifold, consists of a family of copies of M, one for
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each element of the Coxeter group, with two copies being identified together
along the appropriate panel when there corresponding group elements differ
by a single reflection. Davis applies this to the case when M is contractible
and shows that the development of M is also contractible. In consequence
any torsion-free subgroup of finite index in the Coxeter group is a Poincare
duality group because it acts freely and cocompactly on the developed space.
Davis points out that more complicated examples can be obtained if one only
assumes that M is aspherical, and Mess takes this further: if M is aspher-
ical the developed space is still aspherical and its universal cover admits a
discrete properly discontinuous and cocompact action of a group which is an
extension of a group involving G = irl(M) by the Coxeter group. In this way
G can be embedded into a Poincare duality group.

Corollary 3.4. If G is the fundamental group of a finite aspherical k-
dimensional complex X then G can be embedded into a PD2k+1-group.

Proof. Every finite k-dimensional complex is homotopy equivalent to a Eu-
clidean neighbourhood retract in 2k + 1 dimensional space, and so one can
replace X with a 2k + 1-dimensional manifold with the same fundamental
group G. Now Theorem 3.3 applies.

The corollary is a fruitful source of examples, and in particular there is one
example noted already by Mess in [17] which is worth repeating here. The
Baumslag-Solitar group with presentation

G = (x, y ; y-lx2y = x3)
has a 2-dimensional Eilenberg-Mac Lane space (which is built in the obvious
way by adjoining a single 2-cell to a bouquet of 2-circles) and it can therefore
be embedded into a PD5-group. This shows that there are PD'-groups which
do not satisfy Max-c, the maximal condition on centralisers: the chain

CG(x) < CG(x2) < CG(x4) < CG(Xs) < ...

is a strictly increasing chain of centralisers.
In [15], a group theoretic form of the Torus Decomposition Theorem is proved
for Poincare duality groups which satisfy Max-c. It is conceivable that such
a theory can be developed for arbitrary Poincare duality groups, but as
Mess' example shows one will have to find methods which are independent of
whether or not Max-c holds.

4. Ends of pairs of groups
Let G be a group and let H be a subgroup. There are two end invariants which
one can associate to the pair (G, H), denoted by e(G, H) and e(G, H). The
first of these has good geometric interpretations and can often be computed
by means of the following result:
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Lemma 4.1. If G is finitely generated then e(G, H) is equal to the number
of ends of the quotient graph F/H, where r is the Cayley graph of G with
respect to some finite generating set.

One can give a purely algebraic definition of e(G, H), which makes sense
whether or not G is finitely generated. For a set X let PX denote the power
set of X and let FX denote the set of finite subsets of X. Both PX and
.FX can be regarded as F2-vector spaces, with addition being the symmetric
difference. If X is a G-set then PX and FX become F2G-modules. To define
e(G, H), we can take X to be the set of cosets of H in G:

H\G :_ {Hg; g E G}.

Now e(G, H) is the dimension over F2 of the subspace of G-fixed points in
P(H\G)/.F(H\G):

e(G, H) := dim (P(H\G)/.F(H\G))G . (4.2)

Notice that e(G, H) = 0 if and only if H has finite index in G. If H has
infinite index in G then we have

e(G, H) = 1 + dim Ker (H' (G, .F(H\G)) --> H' (G, P(H\G))) . (4.3)

This can be seen by applying the long exact sequence of cohomology to the
short exact sequence.F(H\G) - P(H\G) -» P(H\G)/.F(H\G).
A subset S of G is called H-finite if it is contained in a finite union of cosets
of H; or more precisely if there is a finite subset F of G such that S C_ HF.
The set of all H-finite subsets of G is denoted by FHG. We can view ,FHG as
an F2G-submodule of PG, and now the second end invariant can be defined:

e(G, H) := dim(PG/.FHG)G. (4.4)

As with the first, e(G, H) = 0 if and only if H has finite index in G. When
H has infinite index a simple cohomology argument yields

e(G,H) = 1 + dim H'(G,.FH G). (4.5)

Further properties of e can be found in Scott's paper [21]. The invariant a was
introduced in [13] where many of its properties are established. In general, e
is the more sensitive invariant: in geometric settings it carries more delicate
information thane and consequently one might expect it to be more useful.
However, it turns out that the very insensitivity of e can be a great advantage.
There are three main reasons why e is so useful. First, the formula (4.5) is
a good deal simpler than the corresponding formula (4.3) for a and as a
consequence e is often much easier to compute than e. As an example, we
recall the following facts from [13].
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Lemma 4.6. Let G be a PD'-group and let H be a PD`-subgroup. Then
(i) e(G, H) = 2 and e(G, H) is equal to 1 or 2,

(ii) e(G, H) = 2 if and only if the restriction to H of the dualising module
for G is isomorphic to the dualising module for H.

Two further properties which make a useful are the following

Lemma 4.7. e(G, H) < e(G, H).

Lemma 4.8. If H < K are subgroups of infinite index in G then e(G, H)
e(G, K).

Both of these facts are easy to prove and we refer the reader to [13] for details.
Their significance arises from the fact that end invariants are particularly
interesting when they take values > 2. Lemma 4.7 suggests that &(G, H) is
more likely to be at least 2 than e(G, H). Lemma 4.8 provides enormous
room for manoeuvre: once we know that e(G, H) > 2 for some subgroup H
we can enlarge H with the sole proviso that we should not enlarge it to a
subgroup of finite index. These considerations turn out to be very important
in proving Theorem 1.2.
What kind of group theoretic results can one hope to prove when given
e(G, H) > 2 or e(G, H) > 2? Since the first condition is stronger than the
second we expect to be able to draw stronger conclusions from the first. This
is indeed true, and is nicely illustrated by the following theorem which we
prove in this section. For convenience we shall say that a group G splits over
a subgroup H if and only if either G = K *H L is a non-trivial amalgamated
free product or G = B*H,t is an HNN-extension, where H is the amalga-
mated or associated subgroup in each case. We say that H is a malnormal
subgroup of G if and only if H fl H9 = 1 for all g 0 H.

Theorem 4.9. Let G be a group and let H be a proper malnormal subgroup.
Assume that e(G) = e(H) = 1. Then
(i) G splits over H if and only if e(G, H) > 2; and

(ii) G splits over a subgroup of H if and only if e(G, H) > 2.

The assumptions that e(G) = e(H) = 1, which refer to the ordinary number of
ends rather than ends of pairs, should not be regarded as serious restrictions:
one can view Stallings' classical theorem on groups with more than one end
as an assertion that most infinite groups have one end. On the other hand,
the assumption that H is malnormal is a very serious restriction, but it turns
out to be satisfied at a critical step in the proof of Theorem 1.2. It is worth
noting two examples which show that one cannot drop either of the conditions
e(H) = 1 or the malnormality of H. Notice that both examples pertain to
low dimensional manifold theory.
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Example 4.10. Let G be the fundamental group of a closed orientable
surface of genus at least 2 and let H be an isolated infinite cyclic subgroup.
Then e(G) = 1, H is malnormal and e(G, H) = e(G, H) = 2. However, such
an H can be chosen so that G does not split over H or any subgroup of H.

In this example we have e(H) = 2, which is why Theorem 4.9 does not apply.
Suitable choices of H can be made by choosing as a generator an element of
G which is not a proper power and which corresponds to a loop on the surface
which is not freely homotopic to an embedded circle.

Example 4.11. Let G be the group with presentation

(x) y, z; x2 = y3 = z7 = xyz),

and let H be any rank 2 free abelian subgroup. Then e(G) = e(H) = 1 and
e(G, H) = e(G, H) = 2, but G does not split over any subgroup whatsoever.

Here, G is the fundamental group of a closed Seifert fibered 3-manifold, and
it contains an abundance of free abelian subgroups of rank 2. However, every
such subgroup meets the centre of G and so is not malnormal. In both 4.10
and 4.11, the assertions e(G, H) = e(G, H) = 2 follow directly from Lemma
4.6.

In one direction, Theorem 4.9 is straightforward for it is an elementary fact
that if G splits over H then e(G, H) > 2. If G splits over a subgroup Ho of H
then e(G, Ho) > 2 and it follows from Lemmas 4.7 and 4.8 that e(G, H) > 2
in this case. We shall concentrate on the more difficult implication for (ii)
since (i) is similar but easier. In fact Theorem 4.9 is a very special case of
results proved in [15], but we can dramatically simplify the proof given there.
We shall need some further notation and some preliminary Lemmas. We
write A + B for the symmetric difference of two subsets A and B of G, and
we denote the complement of B in G by B*. A subset B is called H-almost
invariant if and only if B + Bg is H-finite for all g E G. We shall say that B is
a proper H-almost invariant subset if it is H-almost invariant and in addition
neither B nor B* is H-finite. The next Lemma is merely a translation of the
definition of e into this new notation.

Lemma 4.12. Let H < G be groups and suppose that e(G, H) > 2. Then G
has a proper H-almost invariant subset.

Lemma 4.13. If H is a malnormal subgroup of G and e(H) = 1 then
H'(H,.FHG) is zero.

Proof. As an F2G-module, FHG is isomorphic to the induced module

IndHPH.
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Mackey decomposition gives its structure as an F2H-module:

ResHIndHPH IndHIH9PHg.
9

But since H is malnormal, this simplifies at once to show that, as an F2H-
module,.FHG is a direct sum of PH and a free ]F2H-module. Now the Lemma
follows because H'(H, PH) vanishes for any group H whatever, and H'(H, -)
vanishes on free modules for any group H with one end.

Taking Lemmas 4.12 and 4.13 together one can deduce

Corollary 4.14. Let H < G be groups with e(G, H) >, 2, e(H) = 1 and H
malnormal. Then there is a proper H-almost invariant subset B of G such
that B = BH.

Proof. Any H-almost invariant set B corresponds to a derivation from G
to IHG, given by g H B + Bg. Since H'(H,1HG) = 0 it follows that the
restriction of this derivation to H is inner. This means that there is an H-
finite set C such that for all h E H, we have B + Bh = C + Ch. Now replace
B by B + C.

Now we come to the core of the argument. The basic principle was discovered
by Stallings. In order to obtain a splitting of a group from a given H-almost
invariant subset one would like to find a bipolar structure in the group. After
Stallings' original work [26], Dunwoody discovered an elegant way of viewing
this via actions on trees. These methods are described in further detail here,
in Roller's article, [19]. The main point is to try to prove that

For all g E G one of the sets gB n B, gB fl B*, gB* fl B, gB* fl B* is empty.
(4.15)

More precisely, we shall obtain splittings of groups by using the following
form of the Stallings-Dunwoody theory:

Theorem 4.16. Let K be a subgroup of G and let B be a proper K-almost
invariant set which is contained in K* = G K. Suppose that the following
hold.
(i) gB*flB*=0 forallgEBflB-'.

(ii) gB f1 B* = 0 for all g E B f1 B*-1.
(iii) gB* fl B = 0 for all g E B* fl B-1.
(iv) gB fl B = 0 for all g E B* fl B*-1 N K.
(v)gB=B forallgEK.
(vi) gB0B* forallgEG.
Then G splits over K.

We refer the reader to Roller's article [19] for details of how this can be proved.
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Ensuring that the first four conditions of Theorem 4.16 are satisfied in a
particular situation can be difficult, and can require modifying the original
choice of almost invariant subset. In Stallings original work on groups with
infinitely many ends, this was undoubtedly a major problem, and it was
remarkable that he could overcome it. However, in proving Theorem 4.9
things are somewhat easier, because of the very strong condition that H
is malnormal. The next Lemma is the key to making effective use of the
malnormal condition.

Lemma 4.17. Let H be a subgroup of G and let A = AH and B = BH be
H-almost invariant subsets of G. If g belongs to A*-' n B* then gA n B is
(H9-' n H)-almost invariant.

Proof. Let x be any element of G. We must show that the symmetric
difference (gA n B)x + (gA n B) is (H9-' n H)-finite. Since A and B are
H-almost invariant, there exist finite sets E, F such that A + Ax C_ HE and
B + Bx C HF. Now we have

(gA n B)x + (gA n B) = (gAx + gA) n Bx + gA n (Bx + B)
C gHE n Bx + gA n HF
= gHE n Bx + g(A n g-' HF).

Now gHE n Bx is plainly H9-'-finite, but it is also H-finite because gH is
contained in B* and E is finite. Now a set which is both S-finite and T-finite
for two subgroups S and T is automatically S n T-finite. Thus gHE n Bx is
(H9-' n H)-finite. Similarly, using the fact that g-' belongs to A*, it follows
that Ang-'HF is HnH9-finite and hence g(Ang-'HF) is (Hg-'n H)-finite.
This proves the Lemma.

We need one further Lemma in order to prove Theorem 4.9.

Lemma 4.18. Let H S G be groups and suppose that there is at least one
element g E G such that the left coset gH is not H -finite. Suppose that
A = AH is a proper H-almost invariant subset of G. Then there is a subset
B of G N H with the following properties.

(i) For all h E H, either hB = B or hB n B = 0.
(ii) B is a proper K-almost invariant subset, where K = {h E H ; hB = B}.

(iii) B = BH.

Proof. Replacing A by A* if necessary, we may assume that g belongs to A.
Since A is H-almost invariant, there is a finite set Fx, for each x E G such
that A + Ax C HFF. Let 23 denote the set of all those subsets C of G which
satisfy the conditions (a)-(c) below.

(a) C+CxCHFFfor all xEG.
(b) C = CH.
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(c) gH C C.
Note that T is non-empty because A is in it. Let B be the intersection of all
the members of 23. It is easy to check that B E '3, and so in fact B is the
unique smallest member of ). Moreover, (a) guarantees that B is H-almost
invariant, and (c) guarantees that B is not H-finite. Since B C_ A holds as
well we see that B is a proper H almost invariant subset.
If h is an element of H then hB satisfies both (a) and (b) above, so hB
belongs to if and only if (c) holds. But if hB is in then B C_ hB because
B is the smallest member of 23. Suppose, if possible that B is a proper subset
of hB. Then h-1B is a proper subset of B and by the same token, since it
satisfies (a) and (b), we conclude that g does not belong to h-1B, in which
case g does belong to B N h-1B. But it is easy to check that (a) and (b) hold
for B N h-1 B, and so we have found a member of 23 which is smaller than B,
a contradiction. Therefore B C hB implies B = hB. On the other hand, if g
does not belong to hB then B N hB belongs to 23 and so B C B N hB and
B fl hB = 0. Thus B satisfies (i) and (iii) of the Lemma.
Finally, set K := {h E H ; hB = B}. The fact that B satisfies (i) ensures that
for any x in G, Bfl Hx consists of at most one coset of K. This, together with
the fact that B is H-almost invariant, shows that B is K-almost invariant.

The Proof of Theorem 4.9. We begin by proving the harder part (ii). Let G
and H be as in the statement of the Theorem and suppose that e(G, H) > 2.
By Corollary 4.14 there exists a proper H-almost invariant subset A such that
A = AH. Now, if g is any element of G N H then gH is not H-finite: after
all, gH is certainly H9-'-finite and if it were H-finite as well then it would
be H fl H9-'-finite or in fact finite because H is malnormal; a contradiction.
Thus the special hypothesis of Lemma 4.18 is satisfied and we can apply this
Lemma to obtain a subgroup K of H and a proper H almost invariant set B
such that B=KBH and Bf1 hB=O for all h E H \K.
The next step is to check that B satisfies the hypotheses (i)-(iv) of Theorem
4.16. Suppose that g belongs to B* fl B*-1 N H. Applying Lemma 4.17
with A = B, we deduce that gB fl B is H9-' fl H-almost invariant. But
the malnormality of H implies that H9-' fl H = 1 and therefore gB fl B is
almost invariant in the classical sense. Since G has one end, it has no proper
almost invariant subsets, and it follows that gB fl B is finite. Now note that
gB fl B is right invariant under the infinite group H and being finite, it must
be empty. This establishes the hypothesis 4.16(iv) for those group elements in
B* fl B*-1 N H. But we have already seen that it holds for g E H N K because
this is part of the conclusion of Lemma 4.18. Hence 4.16(iv) is established.
Checking (i)-(iii) of 4.16 is carried out in just the same way, by applying
Lemma 4.17 with each of A and B replaced by one of B and B*.
We know that B = KB. Since B is a proper K-almost invariant set, it is
easy to see that gB 54 B for all g K. Therefore there is no g for which
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gB = B*, for such a g must normalize K and therefore must belong to H, a
contradiction. Thus a splitting of G over the subgroup K of H follows from
Theorem 4.16.
Proving Theorem 4.9(i) is similar but simpler because if e(G, H) 3 2 we can
choose B to satisfy B = HBH and there is no need to appeal to Lemma 4.18.
The proof now proceeds to yield a splitting of G over H.

5. The proof of Theorem 1.2

We begin with a simple remark:

Lemma 5.1. If G is a PD"-group and G splits over a subgroup H then H
has cohomological dimension exactly n - 1.

Proof. Certainly H and the vertex groups involved in the splitting must
have infinite index in G and therefore both H and the vertex groups have
cohomological dimension at most n - 1 by Strebel's Theorem 3.2. Now,
corresponding to the splitting of G there is a Mayer-Vietoris sequence for the
cohomology of G and this ends as follows:

...-*Hi-1

Applying this with coefficient module ZG we conclude that H"-1(H, ZG) is
non-zero, because H' (G, ZG) = Z is non-zero. This shows that H also has
cohomological dimension at least n - 1.

Now suppose that G is a PD'-group and that H is a rank 2 free abelian
subgroup. Then e(G, H) = 2, as noted in Lemma 4.6, and so if H is mal-
normal in G then G splits over a subgroup K of H by Theorem 4.9. Note
that K must necessarily have finite index in H because of Lemma 5.1. What
this remark suggests is that it is important to understand how H intersects
its conjugates. Malnormality is a strong condition which does not hold in
general, but clearly, for any g in G, one of the following holds:

Hf1H9=1,or
H fl H9 is infinite cyclic, or
H fl H9 has finite index in both H and H9.

Group elements g for which the third possibility holds are precisely the el-
ements for which H and H9 are commensurable and the set of all such el-
ements is a subgroup called the commensurator of H in G, and denoted by
CommG(H). In [10] it is shown that either H has finite index in its com-
mensurator or G is polycyclic-by-finite, and at this point the proof naturally
divides into two cases. If G is polycyclic-by-finite then it is easy to unravel
the structure of G and we shall say no more about this case. Thus we as-
sume from now on that H has finite index in its commensurator. Since G is
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torsion-free there are only two possible groups which CommG(H) can be, up
to isomorphism; the free abelian group of rank 2 or the Klein bottle group.
Replacing H by its commensurator, we still have e(G, H) = 2 but now we
may assume that H = CommG(H) and hence that for all g H, either

HnH9=1,or
H n H9 is infinite cyclic.

Thus, in view of Theorem 4.9 we have

Proposition 5.2. If G does not split over a subgroup of finite index in H
then there exists an element g E G such that HnH9 is infinite cyclic.

In order to see why this Proposition is important we need a more sophisti-
cated version of Theorem 4.9(ii). This version has the advantage that the
malnormal assumption on H is considerably weakened (and replaced by the
two assumptions that e(G, HnH9) = 1 for all g E G ' H and that there is a
group element g such that gH is not H-finite), but at the expense of assuming
that there exists an H-almost invariant set which satisfies the conclusion of
Corollary 4.14.

Theorem 5.3. Let H <, G be groups and suppose that there is a proper H-
almost invariant subset B of G such that B = BH. Assume that e(G) = 1,
and that e(G, H n H9) = 1 for all g E G N H. Then G splits over a subgroup
of H.

Outline of proof. As in the proof of Theorem 4.9 one finds a subgroup K
of G and a new H-almost invariant subset which now replaces B, such that
B = KBH and hB n B = 0 for all h E H N K. The important thing now is
to check that the hypotheses (i)-(iv) of Theorem 4.16 hold. When checking
(iv) for example, one finds that for g belonging to B* n B*-' N H, the set
gB n B is H9-' n H-almost invariant. Since e(G, H9-' n H) = 1 it follows that
gB n B is H9-' n H-finite. If gB n B is non-empty then being right invariant
under H means that there is an x such that xH is H9-' n H-finite, and this
leads to a contradiction. Therefore gB n B is empty, and the rest of the proof
proceeds as with the proof of 4.9.

Returning now to the PD'-group G and the self-commensurating torus or
Klein bottle subgroup H, we note that all the hypotheses of Theorem 5.3
are satisfied except one: namely we do not know that there is a proper H-
almost invariant subset B which is equal to BH. Certainly there exist proper
H-almost invariant subsets, but the question of whether or not they can be
chosen to satisfy B = BH is a genuine obstruction to splitting G over a
subgroup of H. This fact, and the theory of this obstruction can be found in
in [10].
To exploit this we will use the following technical result which replaces the
idea of singularity controllers introduced in [12].
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Proposition 5.4. Let H < G be groups such that H has finite index in
CommG(H) and suppose that B is a proper H-almost invariant subset of G.
Let K and K1 be finitely generated normal subgroups of H, and let N and N1
denote their normalizers in G. Suppose that the following conditions hold.
(i) B = HB.
(ii) For all non-empty finite subsets F of G, HFK is a proper subset of

HFN and HFK1 is a proper subset of HFN1.
(iii) For all g E G, H9 is H -finite if and only if H9-' is H -finite.
(iv) Whenever L and L1 are subgroups of finite index in K and K1 respec-

tively then the group (L, L1) which they generate has finite index in H.
Then Bo = B 'N CommG(H) satisfies Bo = BoH.

Proof. Initially we will not use the subgroups K1 and N1, nor will we need
condition (iv), so that the first part of the argument can be applied in slightly
more general situations. First, we would like to know that B = BK. While
this may not be true, it does at least follow from the fact that K is finitely
generated that there are only finitely many double cosets HtK with the prop-
erty that HtK is not contained in B and is also not contained in B*. We now
replace B by another set which differs from B by an H-finite amount in order
to minimize the number of these bad double cosets. Let Ht1 K, ... , Htm K
be a list of the bad double cosets. These now have the property that neither
HtiK n B nor HtiK n B* is H-finite, for each i, whereas all other double
cosets are either entirely contained in B or entirely contained in B*.
Set C :_ {g E G ; gK is H-finite}, (note that in general this need not be a
subgroup). Clearly ti, ... , tm do not belong to C. Now let g be an element of
N. Note that N C C and C = HCN, so the H finite set B+Bg is the disjoint
union of the sets (BnC)+(BnC)g and (B\C)+(B-, C)g, and furthermore
B + Bg is contained in the disjoint union of C and the double cosets HtiK,
for 1 < i < m. Let T be a set of (H, K)-double coset representatives in G, let
To consist of those elements of T which belong to C, let T1 consist of those
elements of T which belong to G -, (C U {t1, ... , tm}) and let T2 be equal to
{ti, ... , tm}. Thus T is the disjoint union of To, T1 and T2. Moreover we can
choose subsets So and S1 of To and T1 respectively such that B is the disjoint
union of HSOK, HS1K and the sets B n HtiK for 1 < i < m. The fact
that B + Bg is H-finite for all g E N shows that HS1K = HS1N and that
the double cosets HtiK are permuted under right multiplication by elements
g E N. Hence HT2K = HT2N and so by (ii), it follows that T2 = 0. Thus
we have proved that

B=BKand(B- C)=(B\C)N. (5.5)

Now we introduce K1 and we set C1 = {g E G ; gK1 is H-finite}. By exactly
the same reasoning,

(B -, C1) = (B -, C1)N1. (5.6)
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Now H is contained in N n N1, so both B N C and B N C1 are right invariant
under H, and therefore their union is right invariant under H:

(B N (C n C1))H = (B N (C n C1))H. (5.7)

Claim. C n C1 is H -finite.

Proof of Claim. Let g be an element of c n C1. Then gK and gK1 are
both H-finite. Hence K9-' and Kg

-I

are both H-finite. This implies that
L = K n H9 has finite index in K and L1 = K1 n H9 has finite index in
K1. Therefore (L, L1) has finite index in H by (iv), but it is also contained
in H9. This implies that H9 is H-finite and hence by (iii), g belongs to
CommG(H). We conclude that C n C1 C_ CommG(H). Since H has finite
index in CommG(H) the claim is proved.

Now the Proposition clearly follows from (5.7).

Corollary 5.8. Let G be a PD'-group which is not polycyclic and let H
be a rank 2 free abelian subgroup such that e(G, H) = 2 and such that H
has finite index in its commensurator. If G does not split over a subgroup
commensurable with H then there is a cyclic subgroup K of H such that for
all9EG,

H n H9 infinite cyclic = H n H9 is commensurable with K.

Moreover C := {g E G ; gK is H -finite} is equal to the commensurator of
K.

Proof. There must be at least one infinite cyclic subgroup K of the form
H n H9 for some g by Proposition 5.2. If there is another one, K1, which is
not commensurable with K then it is easy to see that all the hypotheses of
Proposition 5.4 are satisfied. The conditions in 5.4(ii) come about because
K = H n H9 necessarily has very large normalizer, but the proof is quite
technical and it is here that we use the assumtion that G is not polycyclic.
First note that K is central in the group (H, H9) because H is abelian. There
are two cases to consider. If (H, H9) has finite index in G then K and in par-
ticular every element of K has centraliser of finite index in G. This means
that the set

L(G) := {x E G ; IG : CG(x)l < oo}

is non-trivial. Standard results show that, in any torsion-free group, o(G)
is a torsion-free abelian normal subgroup, (details can be found in [18]). If
o(G) has rank > 2 then it is straightforward to show that G must be poly-
cyclic. Therefore 0(G) has rank one and hence every cyclic subgroup of
0(G) is normal. In particular K is normal and so in this case the Corollary
is established.
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The second case we have to consider is when (H, H9) has infinite index in
G. In this case it must be a group of cohomological dimension 2 and since
it has the non-trivial central subgroup K it follows from results of Bieri [1]
that (H, H9)/K is free-by-finite, and since (H, H9)/K cannot be cyclic-by-
finite it follows that (H, H9) involves a non-cyclic free subgroup. It is now
easy to check the hypothesis (5.4)(ii). Let N denote the normalizer of K
and suppose that F is a non-empty finite subset of G such that HFN =
HFK. Choose any element x E F. Then xN C HFK and so we have
N C_ x-1HFK. Now apply Dedekind's Law in the following form: if A <, B
are subgroups and C is a subset of some group then B fl CA = (B fl C)A.
Set A := K, B := N, and C := x-'HF. Thus we have N = N fl x-'HFK =
(N fl x-1HF)K. Now, x-'HF = Hxx-'F comprises finitely many cosets
of Hx, and an intersection N fl Hay is either empty or consists of a single
coset of N fl Hx. Therefore there is a finite subset E of N such that N =
(N fl x-1HF)K = (N fl Hx)EK, and since the elements of E normalize K,
we have N = (N fl Hx)KE. Since N fl Hx is abelian and normalizes K,
it follows that (N fl Hx)K is a metabelian subgroup of G. But then N is
metabelian-by-finite, which contradicts the fact that it has a non-cyclic free
subgroup.
The remaining hypotheses of Proposition (5.4) are relatively easy to check,
and the Proposition shows that the obstruction to a splitting vanishes, a
contradiction. The last assertion now follows easily.

The Proof of Theorem 1.2. Let G be a PD'-group and let H be a rank 2
free abelian subgroup such that e(G, H) = 2 and such that H has finite index
in its commensurator. Let B = HB be a proper H-almost invariant subset
of G. Let K be a cyclic subgroup of H as determined by Corollary 5.8. Let
C denote the commensurator of K and let N denote the normalizer of K.
Now the first part of the proof of Proposition 5.4 shows that (B N C)N =
(B N C), (see (5.5)), and also after possible adjustment to B, that BK = B.
Let t be an element of B N C and let g be an element of C. Then HtK is
contained in B, and since B is H-almost invariant, HtKg N B is H-finite.
Since K9 and K are commensurable we can write HtKg = HtgK9 as a union
of finitely many translates of HtgL where L = K fl K. Now HtgL N B is H-
finite and so also is any translate. Therefore HtgK, which is a union of finitely
many translates, is H-finite. Since B = BK we must have HtgK C B N C,
and hence HtC C B N C for all t E B N C. Hence

(B N C)C = (B N C). (5.9)

A fortiori, B is C-almost invariant and so also is B1 = B N C. We are now
almost in a position to apply Theorem 5.3, with C playing the role of H. But
we need to consider some special cases first.
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Case 1. C = G.
The function

9 '-*

JK9:KnK9I
1K:KnK9l

defines a homomorphism from C to the multiplicative group of positive ra-
tional numbers. [To see that ¢ is a homomorphism note first that if L is any
subgroup of finite index in K n K9 then

IK: LI

Now, for elements g, h E G, set L := K n K9 n Kh n K9h and observe that

0(9)-IK9:KnK9I_IK9h:KhnK9hI
IK:KnK9I IK:KnK9I

IKh:LI _ _IKhnK9h:LI
(h) IK:LI IKnK9:LI

IK : LI I K : I K n K9 : LI
= J

Thus G/Kerq is free abelian. If Kerq is a proper subgroup of G then G has
an infinite cyclic quotient and this leads at once to a splitting of G of HNN-
type, fulfilling Theorem 1.2(ii). On the other hand, if trivial then for any
g E G, K n K9 and all its subgroups are normalised by g. Thus if g , . .. 9n
are generators of G then K n K91 n ... n K9" is an infinite cyclic normal
subgroup of G. Thus Theorem 1.2(iii) is fulfilled.

Case 2. There exists g E G N C such that K9 n C has finite index in K9
and K n C9 has finite index in K.

This means that there are non-identity elements x, y of K, K9 respectively
such that x E CommG(K9) and y E CommG(K). Thus there are non-zero
integers p, q, r, s such that

(x')' = x9

and

(y')x = y'.
We can now define two homomorphisms ox and ¢y from (x, y) to Qx by
O.,(g) = b where a, b are such that (x6)9 = xa and qy is defined by q5y(g) = b
where a, b are such that (yb)9 = ya. Using these homomorphisms it can be
shown that there exist positive integers c, d such that x` and yd generate
a free abelian group, A say, of rank 2. But now (x`) and (yd) are non-
commensurable cyclic subgroups of A both having large commensurators,
and therefore G splits over a subgroup commensurable with A by Corollary
5.8. Thus either (i) or (ii) of Theorem 1.2 is fulfilled.
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Case 3. C is a proper subgroup of G and for all g E G\C, either Kfl C9 = 1
or K9 flC=1.
In this case C must have infinite index and by Strebel's theorem it has co-
homological dimension at most 2. We know that C contains a free abelian
group H of rank 2 and since a(G, H) = 2 we have e(G, C) > 2. Moreover the
finitely generated subgroups of C which meet K are i-groups and so are fun-
damental groups of finite graphs of infinite cyclic groups. From this structure
theorem it follows that the subgroups of C which do not meet K are locally
free. Hence for all g E G -, C, the intersection C fl C9 is locally free, because
either it can be regarded as a subgroup of C which does not meet K or it
can be regarded as a subgroup of C9 which does not meet K9. Now an easy
calculation shows that if G is a PD'-group and J is a locally free subgroup
then e(G, J) = 1. Hence we have e(G, C fl C9) = 1 for all g C. Thus, with
cases 1 and 2 disposed of, we can return to the C-almost invariant set B1.
Theorem 5.3 now applies.
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0. Introduction

In this article we present a short survey of the torsion invariant N(G) and
its application to problems in topology and group theory, as developed in
[LM1], [LM2] and [LM3]. The invariant is designed to distinguish non Nielsen
equivalent generating systems of minimal cardinality for finitely generated
groups (see Definition 1.1 below). It can be applied in practice to any finitely
presented group and sometimes also to finitely generated groups which are not
finitely presented (see [MoS]). Its main application is given by the following:

Theorem 0.1. Let G be presented by

G = (x1, ... , x,, I R1, R2, ... ).

Let y1) ... , yn be a second generating system of G, given as words in the xi,
i.e.,

ya = Wa(xi,...,xn), for j = 1,...,n.

Let aWjlaxi and aRk/axi denote the canonical image in ZG of the Fox
derivatives of W, and Rk with respect to xi. Let A be a commutative ring
with 0 0 1 E A, and let p : ZG -+ M,n(A), p(l) = 1, be a ring homomor-
phism satisfying p(aRk/axi) = 0 for all Rk and xi. Then

(1) X 1 ,. .. , xn and y1, ... , yn are both generating systems of minimal cardi-
nality for G.

(2) If the determinant of the (mn x mn)-matrix (p(aW;/axi);,i) is not con-
tained in the subgroup of A* generated by the determinants of p(±x1), ... ,
p(±Xn), then x1, ... , xn and yl, ... , yn are not Nielsen equivalent.

Supported by a grant from the German-Israeli Foundation for Research and Developement
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In §1 we review the basic definitions and properties of Al. In §2 we describe an
application of Theorem 0.1 to a class of non-trivial examples (where G is an
amalgamated free product with amalgam isomorphic to Z ® Z), and in §3 we
show the topological relevance of these examples, which occur in connection
with work of Morimoto-Sakuma (see [MSa]) on unknotting tunnels for non-
simple knots.

1. N-torsion

Every generating system x = {x1,. .. , x, } of a finitely generated group G
canonically determines a free group F(X) on the basis X = {X1,.. . , X,,}, and
an epimorphism ax : F(X) -» G, given by /3,,(Xi) = xi. Nielsen equivalence
is an equivalence relation on generating systems for groups, which describes
when two such maps /33 are essentially the same:

Definition 1.1. The systems x = {x1,. .. , x,,} and y = {yl,... , yn} are said
to be Nielsen equivalent if there is an isomorphism 0 : F(Y) -4 F(X) such
that /3,0=/3y.

The reader should notice that, given x and y as above, there are always
homomorphisms 0 : F(Y) -4 F(X) with /3x0 = /3y. However, these homo-
morphisms are in general far from being isomorphisms. Note that, if 0 is an
isomorphism, then it defines an element 0 of Aut(F(X)), given by Xi -4 0(Y).
If F(X) is a finitely generated free group then a well known theorem of
Nielsen (see [MKS], pp. 162) states that the group Aut(F(X)) is generated
by elementary automorphisms of two kinds:

X, - ' ,

(b) For some i, j E {1,...,n}, i # j, map Xi H X;X and Xk H Xk for
k0i.

(Notice that every permutation of the generators can be expressed as a prod-
uct of isomorphisms of type (a) and (b): for a transposition this is an easy
exercise.)
Denote by a/aXi : ZF(X) --> ZF(X) the i-th Fox derivative of the integer
group ring ZF(X) (see e.g. [BZ], [LS], [F]). Any system of n words W =
{W1,. .. , W,,} in F(X) defines a Jacobian (aW;/aX1) over ZF. In particular,
if W is obtained from X by one application of an elementary automorphism
of type (a) or (b), then the corresponding Jacobi matrices are
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i

r' 0

0

/ 1

i j

0

1 .. Xi

1

1) \ 0 1)

respectively.
The Fox derivatives satisfy the chain rule property (see [BZ], pp. 125): if
U = {U,, ... , Un} is another basis for F(X), then for each V E ZF(X) one
has

aV n aV 8U,
Ox" = 1 j aXi

Hence, if there exists an isomorphism 0 as in Definition 1.1, the automor-
phism 6 of F(X) is a product of elementary Nielsen automorphisms, and
then the Jacobian (6(Y;)/aXi) = (6(X;)/aXi) is a product of elementary
matrices as above. In particular the matrix /jx(a6(Y)/aXi) is then a product
of elementary matrices over ZG.
Hence, showing that the last statement does not hold implies that the gener-
ating systems x and y are not Nielsen equivalent. This is the approach which
we take here and which leads us to introduce N-torsion.
The basic difficulties with this approach are as follows:

(a) In general we do not know how to define 0, as every element yi E G
determines the element 0(Y) only up to modifications within the coset
Qx-'(yi) with respect to ker/ix.

(b) We need to decide whether the Jacobian (0(Y;)/aXi) over the (in general
non-commutative) ring ZG is a product of elementary matrices.

The first difficulty is overcome by considering the problem over a quotient
ring ZG/I defined below, thus dividing out the non-uniqueness of 0. Notice
that the Fox ideal I as defined below is the smallest kernel one needs to take
for such purpose.

Definition 1.2. Let G = (xl, ... , xn 1 R,, R2, ... ) and /ix : F(X) --> G be
as above.
(a) Let II be the two sided ideal in ZG generated by

{/jx(aRk/aXi) (k = 1, 2, ... , Xi E X),

and let ryx denote the quotient map ZG -» ZGIII.
(b) Define the Fox ideal of G to be the two sided ideal I in ZG generated

by all Ix where x is a generating system of G with minimal cardinality.
Denote the quotient map ZG -> ZG/I by ry.
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Remark 1.3.
(1) An easy computation using the chain rule for Fox derivatives shows that

the ideal Ix < ZG is equal to the two sided ideal generated by

{/33(aR/aX;) I R E ker/3x, Xi E X},

and hence independent of the choice of the relators Rk, which normally
generate the kernel of /3.,.

(2) If X' is a different basis of F(X) and x' its /3,-image in G then, using
the chain rule again, one obtains Ix Thus I, is an invariant of
the Nielsen equivalence class of x.

The Fox ideal has the following very useful properties (see [LM2], Lemma 1.3):

Lemma 1.4. Let 8k : F(Y) -+ F(X), k = 1,2, be any two homomorphisms
which satisfy fx o Ok = /3y. Then
(1) for any two minimal generating systems x, y of G the matrix (aylax) E

obtained from /3.,(DOk(Y)/aX2)j,i by applying the above map
is the same fork=1 as fork=2.

(2) The matrix (ay/ax) is invertible. O

Hence, by considering the matrix /33(a8(Y)/OX,);,i as a matrix over ZG/I,
we can take "Fox derivatives in the group"; that is aye/axi is well defined
regardless of the particular expression of yj as a product of the xi's.

In order to tackle the second difficulty we appeal to the standard method
for detecting elementary matrices over a given ring, provided by algebraic
K-theory.
Given a ring R denote the direct limit of GL,,(R) for n --> oo by GL(R). Let
E(R) denote the subgroup of GL(R) generated by the images of the elemen-
tary matrices with l's on the diagonal and at most one non-zero entry r E R
off the diagonal. Recall that E(R) is the commutator subgroup of GL(R)
(see [M]), and that the first K-group is defined as K,(R) = GL(R)/E(R).
Let T be the image in Kl(ZG/I) of the subgroup generated by trivial units,
i.e. the matrices of the form (a) above, with elements ±g E G on the diagonal.

Definition 1.5.
(a) Assume I# ZG. We define the torsion invariant A1(G) as the following

quotient of the first K-group of the ring ZG/I:

H(G) = Kl(ZG/I)/T.
For any two minimal cardinality generating systems x, y of G define

X(y, x) = [(ay/ax)] E N(G).
(b) If I = ZG then we say that N(G) is degenerate and we formally define

,N(G) = {0}. In particular one has always N(y, x) = 0.

Since any two matrices which differ only by a product of elementary matrices
determine the same value in X (G), one obtains:
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Proposition 1.6. .A((y, x) depends only on the Nielsen equivalence classes
of x and y. If x and y are Nielsen equivalent then IV(y, x) = 0 E N(G).

Having now put the original question in a theoretically satisfying framework,
our next problem is that any application of .A1(G) requires us to compute I,
and this needs information about all Nielsen classes of G, which are in general
unknown. This difficulty is dealt with by the next lemma (Lemma 2.1 of
[LM2]).

Lemma 1.7. Let x be a minimal generating system of G, and let A be any
commutative ring with 0 0 1 E A. Every ring homomorphism ax : ZG/Ix -*
M,n(A) with o ,.,(I) = 1 maps yx(I) to 0 E la'IL,,,(A) and hence induces a ring
homomorphism v : ZG/I -> M,,, (A).

All maps o : ZG/I -> Mm (A) induce, by the functoriality of K,, a map

K1(a) : Kl(ZG/I) -> K,(Mm(A)) = Kl(A),

(where the last equation is induced by "forgetting the brackets"). On K1(A)
we have the determinant map det : If, (A) -> A* into the multiplicative group
of units A* of A. Let rQ denote the composition map

rQ : GL(ZG/I) - det)
A*.

We define the subgroup Ta of A* to be the image r,(T) of the set of trivial
units T C GL(ZG/I) (see Definition 1.5). Summing up, we obtain the follow-
ing proposition, which also proves Theorem 0.1 (2). Notice that statement (1)
of Theorem 0.1 follows directly from the fact that for non-minimal generating
systems the ideal I (or more precisely, its analogue,) is always equal to the
whole group ring, (see [L], [LM3]).

Proposition 1.8. Let x be a minimal generating system of G and A a com-
mutative ring with 0 # 1 E A. Any representation o : ZG/I -> M,,,(A) (or
equivalently o : ZG/II -> with v(1) = 1 induces a homomorphism

N(a) : N(G) -> A*/To.

A necessary condition for applying Proposition 1.8 (or Theorem 0.1) is to
have a representation o : ZG/I -* M,,, (A) with v(1) = 1, where A is a com-
mutative ring. It was shown in [LM2] that such representations do generally
exist, and how one can find them. In the next section we construct such a
representation for a particular class of groups, and apply Theorem 0.1.
Before finishing the section we should point out some of the properties of
H(G) (see Theorem I of [LM2]):
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Remark 1.9.
(1) For all n E N the construction Al describes a functor from the category

Cn, of groups with fixed rank n and surjective homomorphisms, to the
category Ab of abelian groups. In particular we obtain for all objects G,
H of Cn and any morphism f : G -» H

V(f) : N(y,x) H JV(f(y),f(x))

for all generating systems x and y of G with cardinality n.
(2) If z = {z1,. .. , zn} is another minimal generating system of G as above,

then
AI(z, y) + AI(y, x) = ,V(z, x).

2. An example

Consider the following amalgamated free product with amalgam isomorphic
to ZED Z:

G = (x, y I xPy-q) * (u, v I u-' 1-lul ),
(SP=u, x'y-1=1)

where

(1) p,q,rEZsatisfyp,q,r>1,p-rq=1,and
(2) 1 = 1(v, u) is a word in v and u with exponent sum in v different from 0.

We can eliminate the generators y and u and obtain a two-generator, one-
relator presentation:

G = (x, y I xP(1-lxr)-q), 1 = l(v, x')

Notice that since xP = yq in the first factor, we can replace the amalgamation
xP = u by yq = u without changing G:

G = (x, 1y I

xPy-q)

(y9=u, x y-1=!)(v, u I u-11-lul ).

As gcd(p,r) = 1, we can eliminate the generator x, applying the Euclidean
algorithm to the equations xP = y-q, xr = ly. Thus {y, v} is a second
generating system for G.

Proposition 2.1. The generating systems {x, v} and {y, v} of G are not
Nielsen equivalent.

Proof. We want to apply Theorem 0.1. Hence our first step is to compute
the canonical generators for the ideal If,,,) from the presentation of G. Let
/3 : F(x, v) -» G be the natural epimorphism as above. As our group G is a
two-generator, one-relator group, the generators of the ideal are:

/3(OR/8v) = /(8xP(l-lxr)-q/8v) = N(-xPy-q(1+y+...+yq-1)(-1-1)8l/8v)
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and
/3(OR/ax) = (3(axp(1-1x,.)_q/ax).

The next step is to obtain a representation p of ZG into some matrix ring
over a commutative ring A with 0 0 1 E A, which maps I{x,,,} to 0. The
fundamental formula for the Fox calculus gives

0 = /3(R) - 1 = /3(OR/ax)(x - 1) +Q(OR/av)(v - 1).

Hence it is sufficient to find a representation p : ZG -+ M,,,(A) where the
image of /3(OR/av) equals 0 and p(x) - 1 is not a zero divisor. For example,
if we choose m = 1 and A = C, then any homomorphism p of G with
p(y) = e2',ilq and p(x) # 1 will define a representation of ZG/I. Since the
abelianization of the relator R gives xl9 = 1, we obtain such a homomorphism
p if x is mapped to e2"+/P and v to e-2"t/Pqw, where w (# 0 by assumption) is
the exponent sum of v in 1 = l(v, xP).
The last step is to compute the Jacobian matrix a{y,v}la{x,v}, its image
[a{y, v}/a{x, v}] as a matrix over C, and its determinant. It is immediate
that

Of Y, v} _ (ay/ax 01

19f X, v} 1

so that det[a{y, v}/,9{x, v}] is the image of ay/ax in C. We compute

ay/ax = al-lx''/ax = -1-1(al/ax) + 1-1(1 + x +... + xr-1)

Since 1 is a word in xP and v, we obtain (al/ax) = (al/axP)(axP/ax) _
(al/axp)(1 + x + ... + xp-1) -+ 0 as x -3 e2"'/p. Hence the absolute value of
det[a{y,v}/a{x,v}] is 1(1 - x'')/(l - x)l. This is strictly bigger than 1, since
1 < r < p - 1, by assumption on p, q and r. As the modulus of the image
of x and v is 1, the determinant det (a{y, v}/a{x, v}) can not be a trivial
unit. Thus by Theorem 0.1 the generating systems {x, v} and {y, v} are not
Nielsen equivalent.

Now we claim that q(x) = x and q(v) = lvl-1 defines an automorphism
0 : G - G. This can be seen either by a direct computation, or by a general
argument for amalgamated products, since 1 is contained in the center of the
amalgam (see for example [CL]). An easy computation shows that 0(l) = l
and hence q"(x) = x, q5n(v) = 1"`vl-"`. Notice that 4(y) = y and thus
on (y) = y.

Proposition 2.2 For all n E Z the generating system {y, v} is Nielsen in-
equivalent to the generating system {q"(x), j"(v)}, and the generating system
{x, v} is Nielsen inequivalent to {cbn(y), c"(v)}.

Proof. The fundamental formula for Fox derivatives gives

In-1 = al"/av(v-1)+aln/ax(x-1) = aln/av(v-1)+(aln/axp) axp/ax(x-1).
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When evaluated in C via the map p, this becomes equal to p(aln/av(v - 1)),
as p(x) = e2"'/P. Now consider the determinant

a{qn(x), on(v)}
det p

a{x,v}

It is immediate that this is equal to

p(81"`vl-7b/8v) = p((l -1"vl-n)al"/av + ln) = 1.

Recall that the torsion invariant satisfies a cancellation rule as stated in Re-
mark 1.9 (2). Thus Proposition 1.8 gives

N(P)(H({jn(x), 0'(v)}, {y, v}))
= H(p)(JV({qn(x), On(v)j, {x, v})) + N(p)(N({x, v}, {y, v}))

= N(p)(N({x, v}, {y, v}))

= -Af(p)(JV({y,v},{x,v})),

which is non-zero by the proof of Proposition 2.1. Hence {On(x), lbn(v)} and
{y, v} are not Nielsen equivalent. The second statement is proved the same
way.

3. Topological applications

Let M(a, /3, p, q), with gcd(p, q) = gcd(a, /3) = 1, a > 4 and even, be the
three-manifold which is obtained by gluing the complement of the two-bridge
link K = K(a, 8) = Kl U K2 along the boundary component ON(K2) to
the complement of the torus knot T(p, q) in the following way: the glu-
ing map sends the meridian u of K2 to the fiber of the Seifert fiberation
of S3 - N(T(p, q)). A longitude 1 of K2 is mapped to a cross curve of the
Seifert fiberation. The manifolds M(a, /3, p, q) are the complements of non-
simple knots with tunnel number 1, as shown by Morimoto and Sakuma (see
[MSa]). The fundamental group of the knot exterior, G = ri(M(a, /3, p, q)),
has a presentation as a free product with amalgamation over a Z ® Z which is
of the type considered in section 2 (not neccessarily satisfying the conditions
(1) and (2) above), and with the additional specification that

1 = VE'UE2 ... UC _2Vf -1
7

e, = -1 [+Rlal.

Here the generators x, y are represented by the singular fibers in the Seifert
fiberation of S3 - N(T(p, q)), and v is a meridian on the boundary compo-
nent YN(Ifi). Similarily as in section 2, one can see that this group is a
two-generator, one-relator group. (Alternatively, this follows from [MSa]).
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However, in order to apply the results from the previous section, we will
concentrate on the case

p - rq= 1, p,q,r> 1, e1+e3+...+Ea-1 0,

which gives us a presentation for G precisely as in the previous section.
By a Heegaard splitting for a three-manifold M with boundary we mean a
decomposition of M into a handlebody and a union of two-handles. From such
a Heegaard splitting we can deduce a presentation for the fundamental group
of M. If two Heegaard splittings for M are isotopic, then the isotopy takes
one handlebody to the other and thus induces a Nielsen equivalence between
the generating systems of the corresponding presentations for 7r1(M).
In particular, the generating systems {x, v}, {y, v} of G = 7r1(M(a Q, p, q))
come from two Heegaard splittings E{ x, v}, Ely, v} of M(a, Q, p, q) which
were exhibited in [MSa] (and denoted there by r(j, z, 1), with j E {1, 2} and
z E {x, y}).
The automorphisms on above are induced on G by an n-fold Dehn twist
along the incompressible torus in the knot space. This Dehn twist takes
the Heegaard splittings E{x,,,}, E{y,,,} of M(a, Q, p, q) to Heegaard splittings
E{Xv}, E{y,,,} (which are denoted r(i, z, n) in [MSa]). The above discussion,
together with Proposition 2.2, proves:

Corollary 3.1. For all n, m E Z none of the Heegaard splittings E{x,,,} is
isotopic to any of the E{y,, }

This corollary is proved by different methods in [MSa] (Theorem 4.1 (3)).
In fact, their elaborate arguments give a complete isotopy and homeomor-
phism classification of all genus two Heegaard splittings of the manifolds
M(a, ,Q, p, q). This seems to be difficult to obtain via N(G) in full general-
ity. On the other hand, the computations performed in the previous sections,
based on ,A/-torsion, are comparatively fast and easy. Furthermore, one should
notice that:

(1) The class of groups considered in Proposition 2.2 is more general than
just three-manifold groups.

(2) Even for the case of three-manifold groups the algebraic result (about
Nielsen equivalence), given in Proposition 2.2, does not follow from the
geometric statements in Corollary 3.1 or in [MSa].
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Introduction

Using the notion of a quasi-convex subgroup, developed by M. Gromov [Gr],
H. Short [Sh], gives a geometric proof of a theorem of Howson [Ho]: in a free
group the intersection of two finitely generated subgroups is again finitely
generated. We show that the same geometric approach applies to surface
groups, the key point being that, in a hyperbolic surface group, a subgroup is
finitely generated if and only if it is quasi-convex. Translated to the context
of rational structures on groups, this fact gives a positive answer to a question
of Gersten and Short [GS] about rational subgroups.
We denote by C(r, S) the Cayley graph of r relative to S where r is a group
generated by a finite symmetric set S = S-1. We denote by ds the left
invariant word metric on F relative to S (see [GH] or [CDP] for definitions).

1. Quasi-convex subgroups

Definition. (Gromov [Cr 5.3, p. 139]) Let r be a group generated by a
finite set S = S-1. A subgroup H of r is quasi-convex with respect to S if
there exists a constant K such that any geodesic segment of the Cayley graph
C(r, S) joining two points of H stays in a K-neighbourhood of H.

Remark 1. If r = F(al,... , a,,) is the free group of rank n with its natural
generator system S = {a} l, ... , an 1 }, then any finitely generated subgroup H
of F is quasi-convex with respect to S.

Proof. C(r, S) is a tree. For any h E H there exists exactly one geodesic
between the identity element e and h. Suppose that H is finitely generated
by T, so that h = tlt2 tk where ti E T. The geodesic is covered by the
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geodesic segments joining hi = t1 ti to hi+1 = hit;+1 (say ho = e). These
segments are of uniformly bounded length because T is finite, and their end
points lie on H.

Remark 2. If r is finitely generated by S and if H is a quasi-convex
subgroup of r with respect to S then H is finitely generated.

Proof. Take h E H and choose any geodesic of C(1', S) joining e to h. The
geodesic corresponds to a decomposition h = sl . sn, where si E S. Let K
be the quasi-convexity constant. For every point yi = si si on the geodesic
there exists hi E H such that ds(yi, hi) < K, and hn = h. Then

h = h1(hilh2)...(hn1hn),

and ds(e, hi lhi+1) = ds(hi, hi+1) < 2K + 1, thus H is generated by a set
contained in the finite ball B2x+1(e) of C(1', S).

Proposition 1. (Short) If r is finitely generated by S and if A and B are
quasi-convex subgroups of r with respect to S, then Aft B is also quasi-convex
with respect to S.

The theorem of Howson follows easily from Proposition 1: if A and B are
finitely generated subgroups of a free group - we can assume that the free
group is finitely generated by considering the subgroup generated by A U B
- they are quasi-convex by Remark 1, so A fl B is quasi-convex, and by
Remark 2, also finitely generated.

Proof of Proposition 1. Let KA and KB be the quasi-convexity constants for
A and B. Set

E = {(y,71) E 1 x f I ds(e,-t) < KA, ds(e,71) < KB}

and let N denote the number of elements of E. We will show that A fl B
is N-quasi-convex with respect to S. Take h E A fl B, choose any geodesic
path joining e to h and let h = sl . sn be the corresponding decomposition.
Let z be a point on this path. Suppose the path contains a segment of
length N which contains h but not z; otherwise there is nothing to show. By
hypothesis, starting from each point s1 . sk on the geodesic, there exists a
geodesic segment described by an element yk E P (resp. 1lk E I') of length less
or equal to KA (resp. KB) with end point in A (resp. B) and we can choose
yn = 11n = e. There are N + 1 pairs (ryk, qk) E E for n - N < k < n, thus
there must exist two distinct numbers i and j with n - N < i < j < n such
that (y 71j). This implies that

h' = si ... Sisj+1 ... Sn = Si ... Siyiyj 159+1 ... Sn = S1 ... S 1SA+1 ... Sn

is an element of A fl B.
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Note that this shorter path from e to h' described by s1 sisi+1 s is
not in general a geodesic. But, starting from each of its vertices there still
exists a path, equal to a 7k (resp. qk) or a translated version of a 7k (resp.
'1k), of length less than or equal to KA (resp. KB) with end point in A (resp.
B). This means that if the segment joining z to h' on this shorter path is
still longer than or equal to N we can apply the same trick again to obtain
h" E A fl B and so on. We will eventually come up with h(m) E A fl B at a
distance less than or equal to N from z.

2. Surface groups

Proposition 2. Let 1' be the fundamental group of a closed surface X which
admits a hyperbolic structure. If H is a finitely generated subgroup of r then
H is quasi-convex in T (with respect to any finite generator system of f).

This implies:

Proposition 3. Let r be the fundamental group of a closed surface. If
A and B are finitely generated subgroups of F then A fl B is again finitely
generated.

Proof of Proposition 2. We denote by IH[ the two dimensional hyperbolic
space. Let Y = H\IH[ be the covering of X corresponding to H. Topologically,
Y is a closed surface minus a finite (possibly empty) collection of disjoint
closed disks Di. Furthermore, Y is negatively curved and without cusps;
there are no non-trivial small loops in Y because it covers a compact space.
Let 7i be a loop in Y going around Di, then for each i there exists a unique
geodesic loop in the free homotopy class of 7i. These geodesic loops are
disjoint because the Di are disjoint. As a consequence, there exists a compact
geodesically convex submanifold C C Y on which Y retracts by deformation.
The covering projection

p:IH[ - Y

is a local isometry so that Z = p -'(C) is geodesically convex in H. Pick a
base point xo in H and let

cp : T - H, 7 ' * 7xo,

be the monodromy action. This induces a commutative diagram:

r' H
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where the vertical arrows are inclusion maps. The group r (resp. H) acts
properly and discontinously by isometries on H (resp. Z) with compact quo-
tient X (resp. C). It follows that the horizontal arrows are quasi-isometry
maps (see [GH 111.3.19]). Because Z is convex, H is quasi-convex with respect
to any finite generator system of r (see [CDP 10.1.4] ).

Remarks. (i) Z is the convex hull of the limit set of H.
(ii) It is a well-known fact that in a hyperbolic group a subgroup which
is quasi-convex with respect to a particular finite generator system is also
quasi-convex with respect to any finite generator system (see [CDP 10.4.1]).

3. An example in dimension three
Let us recall classical examples of Jorgensen and Thurston which show that
there exist finitely generated subgroups in hyperbolic three-manifold groups
which are not quasi-convex. Let M be a closed hyperbolic three-manifold
which fibres over the circle with fibre a closed surface of genus two (see [Su]).
Let 1' be the fundamental group of M and let S be a finite generator system
for T. Let H be the fundamental group of the fibre and let T be a finite
generator system for H. We assume that T C S. Let H now be the three
dimensional hyperbolic space. Let us pick a base point xo E H. As above
the monodromy action gives a quasi-isometry C(I', S) -* H and we obtain a
commutative diagram:

C(I', S) ) H

C(H,T) ) H
where the left vertical arrow is the inclusion map and the right vertical one
is the identity map.
Now suppose H is quasi-convex in T. We will obtain a contradiction. At
infinity we obtain a topological commutative diagram:

or 3 Lr

OH ) LH

where OH and or are Gromov boundaries (see [CDP 10.4.1] or [GH]), and
where LH and Lr are limit sets in the two-sphere. The vertical arrows are
inclusion maps and the horizontal ones are homeomorphisms. As H is normal,
LH is 1'-invariant, but the action of r on the sphere is minimal (see [Th
8.1.2]), so LH = Lr. This implies that

S'-'OH^-LH=Lr=S2,
which is absurd.
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4. Remarks

(1) In the case of hyperbolic surface groups, the same argument as in §3
above, combined with Proposition 2 and the fact that the boundary of a
free group is a Cantor set, shows that the only non-trivial finitely generated
normal subgroups are of finite index. In fact Mihalik and Lustig (see [ABC])
show that if

1-+ H-+T-Q--+1
is an exact sequence of infinite groups with 1' hyperbolic, then H is not
quasi-convex in r.
(2) There is an interesting question about a possible dichotomy between nor-
mality and quasi-convexity for finitely generated subgroups of infinite index
in hyperbolic groups (see [Sw]).
(3) Note that the finitely generated intersection property fails in the example
of § 3 because there exists a subgroup B generated by two elements such that
B fl H is free of infinite rank (see [Ja 5.19.d]).
(4) Let us call a hyperbolic group spiky if all its finitely generated subgroups
are quasi-convex. It is easy to show that if A is a hyperbolic spiky group and
if B is a group which is commensurable with A, then B is also hyperbolic and
spiky. Using covering arguments it is possible to show that if A and B are
hyperbolic spiky groups then the free product A * B is also hyperbolic and
spiky.

5. Rational structures on groups

We now recall some definitions and properties of rational structures on groups
(see [GS]).

Definition. A rational structure (A, L) for a group G comprises
(i) a finite set A and a map u : A --* G such that the monoid homomorphism

induced by y from the free monoid A* to G is surjective;
(ii) a sublanguage L C A* which is regular (i.e. which is the accepted lan-

guage of a finite state automaton), such that µ restricted to L is still
surjective.

Example. According to Cannon and Gromov, (see [GH]), if G is word hy-
perbolic and if A is any finite set of semi-group generators, there exists a
sublanguage L of the geodesic language which is regular and such that µ
restricted to L is bijective.

Definition. A subset B C G is L-rational if there exists a rational structure
(A, L) for G such that µ-1(B) fl L is regular in A*.
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Given a rational structure (A, L) for G, a subset B is L-quasi-convex if there
exists a constant K such that if w E L fl u-1 (B), the path in C(G, A) corre-
sponding to w lies in a K-neighbourhood of B.

The fundamental example is when G is word hyperbolic, words in the language
are geodesics and B is a quasi-convex subgroup of G.

Theorem. (Gersten and Short [GS]) Let (A, L) be a rational structure for
G, let H be a subgroup of G. Then H is L-rational if and only if H is
L-quasi-convex.

Gersten and Short [GS] have asked if there exists a rational structure on the
fundamental group of a negatively curved Riemannian surface such that every
finitely generated subgroup is rational. According to Proposition 2, to the
result of Cannon and Gromov and to the theorem above, we can see that this
is the case. More generally, (see [Sw]):

Theorem. (Swarup) Let G be a geometrically finite torsion free Kleinian
group with non zero Euler characteristic and without parabolics. Let (A, L)
be any rational structure on G which is biautomatic. A subgroup of G is
L-rational if and only if it is finitely generated.

Acknowledgements. I am very grateful to H. Short and G.A. Swarup from
whom I have learnt these ideas about quasi-convexity, to E. Artal and P. de
la Harpe for help and criticism and also to M.A. Roller and G.A. Niblo who
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Introduction

The theory of Bass and Serre [Se] of groups acting on trees has turned out to
be an extremely useful tool in Combinatorial Group Theory. It relates two of
the most basic, but unfortunately rather inconsistently named constructions:
amalgamated products and HNN-extensions, and makes their algebraic and
combinatorial properties completely transparent by means of an associated
group action on a tree. In fact, Bass and Serre show that the general theory
of groups acting on trees is the same as the theory of groups obtained by
repeated applications of those two basic constructions.
In order to employ this powerful theory one needs a plentiful supply of groups
that admit interesting actions on trees. Typical examples studied in Serre's
book are the linear groups of dimension two over Z or the field of fractions
of a principal valuation ring.
One of the oldest methods to recognize free products [LS, Gl] is known in the
mathematical lore as

Ping Pong Lemma. Let G be a group with two subgroups G1 and G2, let
M be a G-set containing two disjoint nonempty subsets M1 and M2 such that

(i) gM1 9 M2 for all 9 E G1 - { l},
(ii) gM2CM1 forallgEG2-{1}.
Then the group generated by G1 and G2 is either the free product G1 * G2 or
a dihedral group.

The second case only arises when both G1 and G2 are cyclic of order two
and equality holds in (i) and (ii). Suppose G1 contains two distinct nontrivial
elements g and h, then g-1 hM1 C_ M2, hence gM1 and hM1 are disjoint proper
subsets of M2. Inductively, one can show that the family

(Ml,M2,9n9n-1 . . 91M1,9n9n-1 ...92M2 192i+1 E G1 - {1},g2i E G2 - {1})
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consists of distinct subsets of M, which immediately implies that G1 and G2
generate their free product.
In fact, the proof shows a little more: any two members of that family either
are disjoint, or one contains the other. If one pictures the usual planar Venn
diagram of this family, the Bass-Serre tree appears visible to the naked eye
as the dual graph of this diagram.
Stallings [St] reformulated and generalized this method in terms of bipolar
structures and used the action of the group on itself and the shape of its Cay-
ley graph to give an algebraic characterization of finitely generated groups
which act on a tree with finite edge stabilizers. The connection between
Stalling's proof and Bass-Serre Theory was later made explicit by Dunwoody
[Du]. The monograph by Dicks and Dunwoody [DD] contains powerful gen-
eralizations of this result and a wealth of applications.
A generalization in a different direction, which puts stronger restrictions on
the group but allows the edge stabilizers to vary in a class of infinite groups,
forms the basis of a series of papers by Kropholler and Roller [KR1-4], which
culminates in Kropholler's proof the the Torus Theorem [K1, K2].
In this note we survey the construction of a tree with a group action used in
all the generalizations of Stallings' work ([Du], [DD], [KR], [DR]). But first
we start of with a classification of group actions on trees that goes back to
Tits [Ti].

Acknowledgements. This paper grew out of numerous conversations with
Peter Kropholler and Martin Dunwoody. I would like to thank them both for
sharing their insights with me.

1. Types of group actions on trees
1.1. A graph X consists of two disjoint sets, the vertices VX and edges EX,
together with incidence maps t,T : EX --i VX, denoting the initial and
terminal vertex of an edge and a fixed point free involution * : E -+ E, such
that te* = re and re* = to for all e E EX. The pair {e, e*} represents the
two different orientations of the (unoriented) edge joining the vertices to and
re. An orientation of T is a subset E+ of EX such that for every e E EX
exactly one of e and e* lies in E+.
If a group G acts on VX and EX such that t, r and * are G-maps, then X
is called a G-graph. We say that G preserves orientations if there exists an
orientation E+ which is a G-set, otherwise G acts with involutions, i.e. there
exists an e E EX and agEGwith ge=e*.
A path of length n in X is a sequence e1, ... , en E EX with rei = tei+i, and
it is reduced if e; # ei+1, for i = 1, ... , n - 1. The graph X is connected if any
two vertices can be connected by a path, and the distance of these vertices is
the length of the shortest path connecting them.
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1.2. A tree T is a connected graph that does not contain any cycles, i.e. any
reduced path beginning and ending with the same vertex. This means that
for any two vertices in VT there exists a unique reduced path, or geodesic,
connecting them. There are many more ways of characterizing trees (see e.g.
[DD] 1.6). For our purposes the most useful property is:

A connected graph T is a tree, if for any e E ET the graph T-{e, e*}
consists of precisely two connected components.

We denote the component containing to by Te, and the other component by
TeT.

Later we shall use two further relations to describe the structure of a tree (cf.
[Du] and [Di]). For an edge e and a vertex v we say that e points to v, and
write e - v, if v E Te. Otherwise, if v E Te, we say that e points away from
v and write v -> e.
For edges e, f E ET we define the ordering relation e > f (e before f) if
Te D Tj, i.e. if there exists a geodesic in T beginning with e and ending with
f. It is clear that if T is a G-tree then both these relations are G-equivariant.
The key observation of Dunwoody [Du] is that the following properties of the
partially ordered set ET also characterize trees.

(i) For any e, f E ET precisely one of the following holds

e = f, e = f*, e > f, e* > f, e > f*, e* > f*

(ii) For any e, f E ET the set {h E ET I e < h < f } is finite.

A partially ordered set that admits an order reversing involution * and satifies
just (i) is said to be nested, while (ii) is called the finite interval condition.

1.3. Now we consider a tree T with a G-action.

Lemma and Definition. We say that an edge e E ET splits T if one of
the following equivalent conditions holds.

(i) For some v E VT both sets T, n Gv and Te fl Gv have infinite diameter.
(ii) For every v E VT both sets Te fl Gv and Te fl Gv have infinite diameter.

(iii) Both Te and Te contain translates of e.
(iv) There is a geodesic in T which contains three different translates of e.
(v) Some element g E G shifts e, i.e. either e < ge or e > ge.

Proof. Let v1i v2 E VT be two vertices at distance d. Then any vertex in the
orbit Gv1 is at distance d from a vertex in Gv2i so (i) implies (ii).
If (ii) holds, then both Te and Te contain translates of to which have distance
at least 2 from te. Therefore both Te and Te contain translates of e.
Any geodesic through translates of e in both Te and Te must also contain e,
so (iv) holds.
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Given three translates gle, gee, g3e on a geodesic, then at least two of them
must be comparable, say gle < 92e. This means that 91-192 shifts e.
Finally, if g shifts e, then all translates {g"e I n E Z} are distinct and lie on
a bi-infinite geodesic, in particular (i) is satisfied for v = te.

1.4. We distinguish three kinds of G-trees.

a) T is called elliptic if for some v E VT the orbit Gv has finite diameter.
b) T is called hyperbolic if some edge splits it.
c) T is called parabolic if it is neither elliptic nor hyperbolic.

Obviously, if some vertex orbit Gv has finite diameter, then the same is true
for all other vertex orbits. It is well known [DD, 1.4.9] that a G-tree is elliptic
if and only if there is either an edge pair {e, a*} or a vertex fixed under the
action of G.
Now suppose T is a hyperbolic tree. Let T denote the subgraph of T com-
prising all edges that split T, together with all vertices incident with these
edges. This is obviously a G-subgraph, and it is connected, because if e and
f are splitting edges, then any edge of the geodesic connecting e to f is also
splitting. Furthermore, if e is a splitting edge, then any G-subtree of T must
neccessarily contain vertices in Te and Te and thus contain e. Hence T is the
unique minimal G-subtree of T.
Next consider a parabolic tree. Here for every edge e and vertex v precisely
one of the sets Te fl Gv and Te fl Gv has finite diameter. The set E+ = {e E
ET I Te fl Gv has finite diameter} is independent of v, and it is a G-invariant
orientation of T.
With this orientation it is impossible to have e* > f for any e, f E E+,
otherwise both e and f would split T; in other words, no two edges of E+
point away from each other. This means that for each vertex v there exists a
unique edge e E E+ with te = v and thus a unique semi-infinite geodesic 'Yv
starting at v. Furthermore, for any other vertex w the geodesics -t, and -t,,
must agree on all but finitely many edges, thus the family of these geodesics
defines an end of T which is fixed under the action of G. For any e E E+ the
stabilizer G,,e is contained in Gre The stabilizers of the vertices of a geodesic
y form an ascending chain whose union is G. In particular, G can not be
finitely generated.
In the parabolic case there are many G-subtrees, e.g. for any e E E+ the
subgraph Tce n9EG T9e is a G-tree. However, there is no minimal G-
subtree, because

e = o.
e+

TG
ET

We summarize our observations in the following
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Corollary and Definition. If T is an elliptic G-tree, then there exists
an edge or a vertex fixed under G. If T is hyperbolic, then there is a unique
minimal G-subtree, and if T is parabolic, then there is no minimal G-subtree.
Suppose G is generated by a single element g, then T is either elliptic or
hyperbolic as a G-tree, and we call g elliptic or hyperbolic, accordingly. If g
is hyperbolic, then the unique minimal g-invariant subtree of T is a bi-infinite
path, called the axis of g.

1.5. How can one tell from the structure of a group, what kind of actions on
a tree it admits?
Trivially, every group admits an elliptic action on any tree. However, there
are also groups which only admit elliptic actions (this is called property (FA)
in Serre's book [Se]). The most obvious example is the class of finite groups.
For an infinite group with that property consider GP,q,r = (a, b, c I aP =
bq = Cr = abc = 1). If GP,q,r acts on a tree T without involutions, then
there are subtrees Ta and Tb fixed pointwise under the action of a and b. A
simple argument shows that if Ta and Tb are disjoint then ab is hyperbolic,
contradicting the fact that c has order at most r. Thus the tree Ta n Tb is
fixed pointwise under the action of a and b, and hence all of G. It is well
known that GP,q,r is infinite for n + 9 + ; < 1.
Now consider the group KP+q,r = (a, b, c I aP = bq = Cr = abc). This is a
central extension of GP'q'', and it is torsion free if the latter group is infinite.
Suppose that z = abc acts hyperbolically on a tree T. Then the actions of
a, b and c are all powers of the same automorphisms of T, which can only
happen when a + s + T = 1. If this is not the case, then a, b, c and z all must
act elliptically, and the argument above shows that there exists a vertex fixed
under KP,q,'

Parabolic actions are easily classified. A group G admits a parabolic action
on a tree if and only if it is the union of a countable ascending chain of
subgroups G, < G2 < G3 < . . < G.

The most interesting case is that of hyperbolic actions. We say that G splits
(over a subgroup S) if it admits a hyperbolic action on a tree (and S is
the stabilizer of a splitting edge e). In this case Bass-Serre theory gives an
algebraic splitting of G as an amalgamated product G, *S G2 or an HNN-
extension G,*S, where G, is the stabilizer of te. In the next section we shall
investigate neccessary and sufficient conditions on G to admit a hyperbolic
action on a tree.

1.6. We finish this section with a simple example. Let R:= 7Z[2] be the ring
of integers extended by 2, and let A be the group of affine self maps of R with
elements (n, r) : x H 2'x + r for r E R and n E Z. Thus A is the semidirect
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product of the additive group R+ and the infinite cyclic group generated by
the multiplication by 2. Let Z C R+ be the cyclic group generated by 1 E R.
We define a graph T with vertex set V = {aZ I a E A}, and for every vertex
v = (n, r) Z we define an edge e with te = (n, r) Z and re = (n - 1, r) Z.

4Z2ZZZZ4Z
I I T T T

4Z+2 2Z+1 Z-}-2

4Z+1 4Z+3

A Tree

It is easy to see that T is a tree, and each vertex is incident with three edges.
The group A acts on T by left multiplication. An element a = (n, r) is elliptic
precisely if n = 0, i.e. a E R+. T is parabolic as an R+-tree, the unique one
way infinite path starting at Z is the horizontal path in the above picture,
and the quotient of T under R+ is a bi-infinite path. Viewed as an A-tree, T
is hyperbolic with one orbit of vertices and edges.

2. Trees and nested sets

2.1. We are mainly interested in characterizing the subgroups over which
a group may split, thus we shall restrict attention to simple trees, i.e. trees
which have one orbit of edges under the action of G and *. Observe that a
simple tree has at most two orbits of vertices. Given any G-tree T and an
orbit of edges E' we can construct a simple G-tree T' with ET' = E', by
contracting all edges not in E. More explicitly, for any vertex v E VT let
v' denote the connected component of T - E' containing v, and for e E E'
define the incidence maps by t'e = (te)' and r'e = (re)'.
The following is immediate from the discussion in § 1.

Proposition. A simple G-tree T is either hyperbolic and has infinite dia-
meter, or it is elliptic and has diameter at most 2.

2.2. The presence of involutions in a G-action on a tree causes a slight
nuisance, e.g. the exceptional case in the Ping Pong Lemma is due to this
problem. To avoid it one could pass to the subgroup Go < G consisting of
elements g E G such that for some v E VT the distance from v to gv is an
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even number. This subgroup has index at most two in G, and it does not
contain any elements that reverse an edge of T.
Alternatively, one can form a new G-tree T' by barycentric subdivision. The
vertex set of T' consists of VT plus a new vertex ve = ve. for any edge pair
e, e* E ET, and there are edges el, e2 with tel = te, Tel = Tee = ve and
tee = Te. So, if ge = e* holds in T, then g interchanges el and e2 in T'. By
doubling all the edges of T we have insured that every vertex of T' is moved
by an even distance.
However, in our later discussion we will have to treat this kind of tree sepa-
rately.

Definition. Let T be a simple G-tree with two orbits of vertices. A vertex
v is called special if for every vertex w not in the orbit of v there exists an
e E ET and a g E G such that w = re = rge, and w is not the terminal
vertex of any other edges.

In this situation one can always reverse the subdivision to obtain a tree T
with a single vertex orbit. In general, the two processes of subdividing and
reversing are reciprocal, except in the case when T is a bi-infinite line and G
acts as an infinite dihedral group. This means that G contains two conjugacy
classes of inversions, one of which reverses edges and the other fixes vertices.
In this case T' is also a bi-infinite line, and all vertices are special. Reversing
the subdivision either yields T with the original action of G, or one where
the roles of the two types of involutions are interchanged.

2.3. We now define a type of subset of G that codes the structure of T.

Definition. For e E ET and v E VT let

G[e,v]:={gEGI e->gv}.

The set G[e, te] is called a characteristic set of T.

The following proposition indicates how properties of T are reflected in prop-
erties of the G[e, v]'s. For subsets A and B of G we shall use A + B to denote
the symmetric difference, and write B* for the complement G - B.

Proposition. Let T be a simple G-tree, then for all g E G, v E VT and
e E ET we have

(i) G[e*, v] = G[e, v]*;
(ii) gG[e, v] = G[ge, v];

(iii) G[e, v]g = G[e, g-'v];
(iv) G[e, vi] + G[e, v2] = {g E G I v1 -- g-'e -f v2 or vi -* g-'e* -+ v2}.
(v) T is elliptic if and only if either G[e, v] or G[e, v]* is a finite union of

right Ge-cosets.
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(vi) Suppose that T is is hyperbolic and v is not special. Then for e, f E ET
e > f if and only if G[e, V] D G[e, f].

Proof. (i)-(iv) have easy verifications.
(v) In view of (iv) the condition that either G[e, v] or G[e, v]* is a finite union
of right Ge-cosets for any v is equivalent to the fact that T has finite diameter,
which means that it is elliptic.
(vi) Let e, f E ET and suppose that e > f, i.e. Te 2 T j , then clearly
G[e, v] 2 G[f, v]. Furthermore, we have G[e, V] D G[f, v], unless Te fl Tj
consists of a single vertex re = tf, which is not in the orbit of v; this means
that v is special.
In this case we have G[e, v] = G[f, v], there is some g E G with e = g f * and
both to and r f are in the orbit of v. Therefore

G[h, v] D G[e, v] for all h > e, and
G[h, v] C G[e, v] for all h < f.

This means that the inclusion ordering of the set {G[e, v] I e E ET} corre-
sponds to the order on ET. 11

Remark. If G fixes v, then G[e, v] is either G or empty, so we can't expect
to get a nested family in this case.

2.4. Let us rephrase this in the language of [KR1]. Let S be a subgroup of G,
then a subset B C G is called S -finite, if B C_ SF for some finite set F C G;
B is called S-almost invariant if B + Bg is S-finite for all g E G, and it is
called proper if neither B nor B* is S-finite.
So, in the situation above, G acts on a simple tree T, v is a vertex of T and e
is an edge with stabilizer Ge := S, then the set B = G[e, v] has the following
properties:

(i) The set of right translates of B and the orbit of v are isomorphic as G-
sets, in particular G,, = {g E G I Bg = g} and B is S almost invariant.

(ii) T is a hyperbolic G-tree if and only if B is proper.
(iii) If B is proper, then the set of left translates of B and B* corresponds

to ET (or ET), in particular it is nested with respect to inclusion and
S = {gEGI gB = B}.

2.5. Suppose we are given a nested set E, how can we reconstruct a tree
T(E) which has E as its edge set? The first construction of this kind was
given by Dunwoody in [Dl], where he defines a relation on E by

e - f := e=f,ore<f*andthereisnohEEwithe<h<f*.
If E is the edge set of a tree, then e - f means that to = if. Conversely,
Dunwoody shows that if E is just a nested set, then - still defines an equiv-
alence relation, and VT(E) can be taken as the set of equivalence classes of
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E, with to = [e] and re = [e*]. The finite interval condition then makes T
into a tree.
In the approach of Dicks and Dunwoody [DD] the vertices are identified with
certain orientations of the edge set. For v E V consider A = {e E ET I
e - v}, the set of all edges pointing to v. Using just the ordering on E
one can define A,e = If E E I f > e or f > e*}. Again, they show that
sets of this kind can serve as vertices for T(E). Their actual construction,
Theorem 11.1.5 of [DD], is slightly more intricate, because it incorporates
barycentric subdivisions to take care of involutions.
We shall use a variant of this method, which is adapted for simple nested
sets, for which the group action together with * is transitive. Here we fix an
edge e E E and define a characteristic set a of E, which will play the role of
G[e, te], by

e:={gEGJe>ge or e>ge*}.

Since there may be two orbits of vertices, we need a candidate for G[e, re],
which will be

e :_ (e*)* _ {g E G I e > ge or e > ge*}.

Now we define VT(E) := {eg, eg 19 E G} with the incidence maps tge
eg-1 and rge := eg-1. In the next two paragraphs we will show that this
definition of T(E) yields indeed a tree.

2.6. The following proposition collects some simple properties of character-
istic sets, modelled on § 2.3. For elements e1, e2 E E we use the interval
notation

[el, e2[ := {9 E G I e1 < g-le < e2 or el < g-le* < e2},

and define ]el, e2], [e1, e2] and ]e1, e2[ similarly.

Proposition. Let E be a simple nested G-set. Then for all e E E and g E G
(i) 9e = geg-1;

(ii) e = ge implies e = ge = eg;
(iii) a-1= {gEGI ge > e or ge > e*};
(iv) a fl a-1 = {9 E G I e> ge*}.
(v) For x, y E G we have

ex-1 + ey-1 = ]xe, ye] U ]xe, ye*[ U [xe*, ye] U [xe*, ye*[.

Proof. (i)-(iv) are immediate. Observe that when E is the edge set of a tree
we have Aye fl Ge = e-le.
(v) Suppose that g E ex-1 fl e*y-1. This means that

(e > gxe or e > gxe*) and (e < gye or e < gye*),
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which is equivalent to

xe < g-le < ye or xe < g-le < ye* or

xe* < g-le < ye or xe* < g-le < ye*.

The same calculation with x and y interchanged completes the proof.

2.7. Theorem. Let E be a simple nested set, satisfying the finite interval
condition, then T(E) is a tree.

Proof. Observe that the left stabilizer of e is contained in the right stabilizer
of e, therefore T(E) is a well-defined graph. By definition every vertex is
the endpoint of some edge, therefore we only need to consider the edges. Let
x, y E G and suppose that txe = lye. This means that

]xe, ye] U ]xe, ye*[ U [xe*, ye] U [xe*, ye*[ = 0.

If xe is comparable with ye, then we must have xe = ye, otherwise the half
open intervals would be nonempty. If xe is comparable with ye*, then we
must have xe < ye* and ]xe, ye*] = 0. Thus we have shown that

xe - ye ex-1 = 8y-1

which is quite obviously an equivalence relation.
A similar argument shows that ixe = -rye if and only if either xe = ye* or
both xe < ye and ]xe, ye[ = 0.
It follows that reduced paths in T are precisely the unrefinable chains in E,
i.e. finite sequences of the form

el > e2 > ... > en with ]ei+1, ei[ = 0.

It is clear that T can not contain any closed paths; for if te1 = Te,,, then
either el = en or el < e,,. But this contradicts the nesting of E.
The finite interval condition is neccessary and sufficient for T to be connected.

2.8. Finally, we consider the case that E is a family of S-almost invariant sub-
sets of G. Here every element is very close to the corresponding characteristic
set.

Lemma. Let B be an S-almost invariant subset of G such that {gB, gB*
g E G) is nested, then B + B is S -finite.

Proof. Observe that 0 C B C G, thus we can choose elements bl E B and
b2 E B*, and there exist finite subsets Fi such that B + Bb- 1 C SFi. If
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B D gB then gb1 E B and b2 E B*, so g E Bbi 1 n b2B*-1. If B D gB* then
gb2 E B and b2 E B, so g E Bb21 n b2B-'. Hence

Bc (Bbi'nb2B*-1)u(Bb21nb2B-1)
c ((B U SF1) n b2B*-1) u ((B u SF2) n b2B-1)

= B U S(F1 U F2).

Using the fact that B is nested with all its translates we can show by a similar
argument that B* C B* U S(F1 U F2), which implies that B + B C S(F1 U F2).

U

In particular the finite interval condition holds in this situation, and the tree
is hyperbolic if B is proper.

Corollary. The group G splits over a subgroup S if and only if there exists
a subset B C G such that
(i) B is proper S-almost invariant,
(ii) S={gEGJgB=B},

(iii) the set E = {gB, gB* g E G} is nested.

Remark. The above corollary provides a proof Theorem 4.16 of [K2]. The
hypotheses of that theorem imply that conditions (i)-(iii) hold and B = B.

References

[DD] W. Dicks and M.J. Dunwoody, Groups acting on graphs, Cambridge University
Press, 1989.

[Di] W. Dicks, Groups, Trees and Projective Modules, Lect. Notes in Mathematics 790,

Springer, 1980.

[DR] M.J. Dunwoody and M.A. Roller, Splitting groups over polycyclic-by-finite sub-
groups, to appear in Bull. London Math. Soc.

[Du] M.J. Dunwoody, Accessibility and groups of cohomological dimension one, Proc.
London Math. Soc. (3) 38 (1979), pp. 193-215.

[Gl] A.M.W. Glass, The ubiquity of free groups, Math. Intelligencer 14 (1992), pp. 54-57.

[KR1] P.H. Kropholler and M.A. Roller, Splittings of Poincare duality groups, Math. Z.
197 (1988), pp. 421-438.

[KR2] P.H. Kropholler and M.A. Roller, Splittings of Poincare duality groups II, J. London

Math. Soc. 38 (1988), pp. 410-420.

[KR3] P.H. Kropholler and M. A.Roller, Splittings of Poincare duality groups III, J. London

Math. Soc. 39 (1989), pp. 271-284.

[KR4] P.H. Kropholler and M.A. Roller, Relative ends and duality groups, J. Pure Appl.
Algebra 61 (1989), pp. 197-210.



Group actions on trees 187

[K1] P.H. Kropholler, An analogue of the torus decomposition theorem for certain Poin-

care duality groups, Proc. London Math. Soc. (3) 60 (1990), pp. 503-529.

[K2] P.H. Kropholler, A group theoretic proof of the torus theorem, these Proceedings.

[LS] Lyndon and P. Schupp, Combinatorial Group Theory, Springer, 1977.

[Se] J-P. Serre, Trees, Springer, 1980.

[St] J.R. Stallings, On torsion-free groups with infinitely many ends, Ann. Math. 88
(1968), pp. 312-334.

[Ti] J. Tits, Sur le groupe des automorphismes dun arbre, in: Essays on Topology
and related problems, Memoires dedies a Georges de Rham (A. Haefliger and R.
Narasimhan, eds.), Springer, 1970, pp. 188-211.



Brick's Quasi Simple Filtrations
for Groups and 3-Manifolds

John R. Stallings

University of California, Berkeley, California, CA 94708, USA.

Abstract. Poenaru [P] and Casson have developed an idea about the metric
geometry of the Cayley graph of a group having to do with certain problems in
3-manifold theory; this is described in [G] and in [GS]. Brick [B] has developed
a non-metric condition related to this, which he calls "quasi simple filtration";
a space is qsf if it is, approximately, the union of an increasing sequence of
compact, 1-connected spaces. Here we outline these notions and establish the
theory in a polyhedral setting. This provides a purely group-theoretic notion
of qsf which seems interesting in itself.

1. Polyhedral niceties

1.1. BASIC FACTS: The theory of finite polyhedra is a standard subject; one
reference is [AH], Chapter 3. The constructions in Whitehead's paper [W]
involve simplicial complexes and subdivisions of particular sorts, and this too
can be considered a polyhedral reference. We shall outline some of the theory
here.
A finite polyhedron P is a subset of some real vector space which can be
triangulated by a finite simplicial complex K whose realization is P = SKI.
It is sometimes more convenient to consider a cell-structure C by finitely
many convex open cells of various dimensions; each such is the bounded
intersection of a finite number of open half-spaces with an affine subspace;
the cells in such a structure are disjoint, and the boundary of any cell is
a finite union of other cells; such a structure has a triangulation obtained
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by a "barycentric subdivision" C'; a vertex is put in each cell, and a set of
these form the vertices of a simplex exactly when their corresponding cells
are totally ordered by the relation "is in the boundary of".
A polyhedral map f : P -+ Q is a function whose graph, as a subset of
P x Q, is a polyhedron; alternatively, such a map is a continuous function
which is affine on each cell of some convex-cell structure on P; given convex-
cell structures C on P and D on Q, we can refine the set of convex cells of
the form f (a) for o E C together with all convex cells of D, to get a convex-
cell structure E on Q, and then determine a convex-cell structure F on D
by looking at the intersections of the C-cells with preimages of the E-cells;
then f will map each cell of F onto a cell of E; and then we can perform
the barycentric subdivision, first on E and then compatibly on F, so that
the map f now becomes a simplicial map F' E'. This construction can
be generalized to apply to any finite set of polyhedra and polyhedral maps
provided no polyhedron is the source of two maps.
We say that a polyhedral map f : P -+ Q is triangulated by triangulations
K and L if IKI = P, ILI = Q, and the map f is determined by a simplicial
map by using the barycentric coordinates as is customary.
To summarize:

1.2. Theorem. [Triangulations of maps] If P and Q are compact polyhedra,
A C P and B C Q are subpolyhedra, and f : P -4Q is a polyhedral map,
then: f can be triangulated by triangulations of P and Q, subcomplexes of
which are triangulations of A and B; furthermore, f (A) and f -'(B) are
subpolyhedra of Q and P. Any diagram of finitely many polyhedral maps can
be simultaneously triangulated, provided that each polyhedron in the diagram
is the source of at most one map in the diagram.

1.3. UNTRIANGULABLE DIAGRAMS: Here is an example of a polyhedral dia-
gram which cannot be triangulated: Let A be a triangle with vertices vo, v1, v2,
and B be a copy of the interval [0, 1] and C be another copy of [0, 1]; we define
maps a : A -> B and : A -+ C, which are affine on all of A, and which
map as follows: a(vo) = 0, a(vi) = a(v2) = 1, /3(vo) = 0, /3(v1) = 0.5, and
/3(v2) = 1. This cannot be triangulated; as a picture shows, if it were trian-
gulated, then there would be a vertex in A on the edge [vo, v2] mapping by /3
to 0.5; the image of this in B, 0.5, would be a vertex of B; the preimage of
this by a must intersect the edge [vo, v1] in a vertex whose image by /3 is 0.25;
etc. This would produce an infinite sequence of vertices in these supposedly
finite simplicial complexes.
This makes evident that there are certain technical problems when making
constructions with polyhedra by the use of simplicial things. In particular,
we prove a pushout-approximation sort of result below (1.10) only under very
special circumstances. (Note that the pushout of the example above, when
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construed in the topological category, is a two-point space with one closed
point which is in the closure of the other point.)

1.4. LOCALLY COMPACT POLYHEDRA: In general we shall be interested in
locally compact, second countable polyhedra and maps which are proper (i.e.,
the inverse image of every compact set is compact). In this situation, we have
a space which is covered by a locally finite collection of compact polyhedra
which fit together along subpolyhedra. Such an object is the union of an
increasing sequence of compact polyhedra, each one contained in the interior
of the next. If p : A --> P is a covering projection, where P is a compact
polyhedron, then A has the structure of locally compact polyhedron; also, if
K is any simplicial triangulation of P, then this lifts to A providing A with
a triangulation L, such that p is simplicial with respect to L and K.

1.5. Theorem. [Pullback] Let 0 : K -+ L and 0 : M -1 L be simplicial
maps. Then there is a simplicial pullback P whose geometric realization is
the topological pullback of the topological realization.

Proof. The construction of P is something like the construction of the prod-
uct of simplicial complexes, which, we recall, involves ordering the vertices of
the factors. Thus, we order the vertices of the target L by some total ordering
<, and then compatibly order the vertices of K and of L so that on vertices
the maps 0 and lb are monotone non-decreasing. With respect to these order-
ings, we define the product K x L to consist of the simplicial complex whose
vertices are ordered pairs (u, v) with u a vertex of K and v a vertex of L;
we give these pairs the lexicographic order so that (u1, v1) < (u2, v2) means:
u1 < u2, or else both ul = u2 and v1 < v2; then a simplex of the product con-
sists of a totally ordered set of vertices whose first coordinates form a simplex
of K and whose second coordinates form a simplex of L. Now, the pullback
simplicial complex P is the subcomplex of the product K x L consisting of
those vertices (u, v) such that 0(u) = z&(v), and of those simplexes in K x L
spanned by such vertices.
It is now a matter of checking through the proof that IK x LI can be identified
with IKI x ELI, to see that IPI can be identified with the topological pullback.

11

1.6. Corollary. Let 0 : K -> L and 0 : M -> L be polyhedral maps,
where K is compact and zb is proper. Then there is a compact polyhedron P
and maps 0' : P -> M, i' : P -+ K which make a pullback diagram in the
topological category and in the polyhedral category.

Proof. We can restrict outselves to the case that L = O(K) and M =
0-1(L), so that the whole picture consists of compact polyhedra. We first
triangulate the two maps 0 and 1'; this will involve two simplicial complexes
whose geometric realization can be identified with L; these have a common
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subdivision, and the original triangulations of K and M can be subdivided
so that the maps ¢ and 0 are simplicial with respect to these; the point of
this is to keep the triangulation of the target L the same for both maps 0
and 0. Then 1.5 applies to this situation.

1.7. k-CONNECTED MAPS: A map f : A --+ B (of topological spaces) is said
to be k-connected, if, for all possible basepoints, f* : irt(A) -* is an
isomorphism for £ < k and a surjection for e = k. The mapping cylinder
M(f) is the space obtained from the disjoint open union (A x [0, 1]) U B by
identifying (a, 1) to f (a) for all a E A. Thus, M(f) deformation-retracts to
B, and so has the same homotopy type as B, and A is included as A x 0 in
M(f). The condition that f be k-connected is the same as to say that the
pair (M(f ),A) is k-connected, in that the relative homotopy groups (or sets,
in low dimensions) 7ri(M(f ), A) = 0 for dimensions i < k. Also, recall that a
single space X is said to be k-connected when 7ri(X) = 0 for all i < k.

1.8. Lemma. [Homotopy triads] Let A and B be topological spaces. Suppose
that A = X1 UX2, and B = U1 U U2, where U1, U2 are open in B. Suppose that
f : A --- B is continuous and that f (Xi) C U, for i = 1, 2. Let k be given;
and suppose that the restrictions of f, giving maps Xi -> Ui (for i = 1, 2)
and X1 fl X. -4 U1 fl U2, are k-connected. Then the map f itself A -* B is
k-connected.

Proof. By dealing with mapping cylinders, we can suppose that f embeds
A as a subspace of B. Then the hypotheses are that the pairs (Ui, Xi) and
(U1 fl U2, X1 fl X2) are k-connected, and the problem is to show that the pair
(B, A) is itself k-connected. One might now say, "All the obstructions are
zero. QED", but here is a sketch of the details:
Consider a map g : A -+ B, where A is an P-cell, for .£ _< k, such that
g(a0) C A. Triangulate A so finely (by the Lebesgue covering lemma) that
every simplex maps by g either into U1 or into U2. We call a simplex of this
triangulation of A a Ul-simplex if g maps it into U1, a U2-simplex if g maps
it into U2, and a U12-simplex if both are true.
We homotop the map g skeleton by skeleton, and simplex by simplex, so
that during the homotopy the simplexes of A retain their characters of be-
ing U1,2,or 12-simplexes; and so that in the end result, each Ui-simplex gets
mapped into Xi and each U12-simplex gets mapped into X1 fl X2. For in-
stance, suppose we are at a stage g' in homotoping the map so that we are
bit by bit getting the p-skeleton to be mapped into A; there is a p-simplex
o, whose boundary is mapped, by g', into A; supposing, say, that o is a
U12-simplex, then its boundary consists of U12-simplexes, which have been
already doctored to map into X1 fl X2. Thus, g' on o represents some element
of irp(Ui fl U2, Xl fl X2), which is supposed to be zero; we can then define a
homotopy of g' on o relative to ao so that the end result maps o into X1 f1X2i
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and carefully extend this homotopy to preserve the U1,2,or 12 character of the
simplexes. In the end, we will have shown that the element of ir,(B, A) rep-
resented by the map g is zero.

The above topological fact has some polyhedral consequences.

1.9. Theorem. Let k > 0. Let f : A - B be a polyhedral proper map,
such that for each x E B, the set f-1(x) is k-connected. Then the map f
itself is (k + 1)-connected.

Proof. Since homotopy groups behave well under direct limit, we can suppose
that B and hence also A are compact polyhedra. Triangulate the map f.
We now build up B a simplex at a time, so that the simplexes are added
in non-decreasing dimension. We prove the theorem by induction on the
number of simplexes of B. The induction step goes thus: Suppose that B is
obtained from B- by adding one simplex o whose boundary is in B-. Define
A- = f `(B-). We note that over the interior o °, barycentric coordinates
give a structure to f -1(o-°) of a product, f -1(o °) Q° x f -'(x) for any
x E a°, and the map f can be taken to be the projection onto the first factor.
We define U1 to be all of B except for one point x in o°, U2 to be co; and
Xi to be f-'(Ui). Because of the product structure, the maps X2 -> U2 and
(X1 fl X2) -> (U1 fl U2) are projections onto one factor (homotopically either
a point or a sphere) with the other factor, f-1(x), being k-connected; an
examination of the homotopy groups of the product then shows that these
two maps are (k + 1)-connected. Then, we can find deformation retractions
X1 -* A- and U1 -> B-; by the inductive hypothesis, we know that the map
A- -> B- is (k + 1)-connected, and so we have X1 - U1 is (k + 1)-connected.
Then 1.8 implies that A -* B is (k + 1)-connected.

Now we can prove a polyhedral result which would be easy if there were a
pushout in the polyhedral category. Such pushouts do not exist, and therefore
this requires some technical trouble. Note that we use a double barycentric
subdivision; one barycentric subdivision makes the subcomplexes we are in-
terested in into "full" subcomplexes, i.e., completely determined by their
vertices; we want to identify certain vertices to get a quotient simplicial com-
plex; in order to get something whose homotopy situation looks like that of
the topological identification space, we must barycentrically subdivide once
more.

1.10. Theorem. [Pushout] Let k > 0. Suppose that

K A

I

l4IK to
B C X
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is a commutative diagram of polyhedra and polyhedral maps, with A and B
compact, and K = 0-1(B). Suppose that 5IK : K -* B is k-connected and
surjective. Then there is a polyhedron P, a polyhedral inclusion B C P, a
polyhedral map f : P -+ X, a surjective polyhedral map a : A -* P, such that
there is a commutative diagram

K A

/Of
101K P to/c \f
B C X

with fa = 0 (from which it follows that f-1(B) = a0-1(B) = B); the
inclusion of B into X is the composition off with the inclusion of B into P;
and the map IaI : JAI IPI is k-connected.

Proof. Since A is compact, we can restrict ourselves to the compact sub-
polyhedron ¢(A) C X, and suppose that all the polyhedra in the picture are
compact. What this theorem does is to describe, in the polyhedral world, a
good enough substitute for what we would get in topological world by taking
A and identifying the subset K to B.
THE CONSTRUCTION OF P. By 1.2, triangulate A and X so that K and B
respectively are the realizations of subcomplexes and so that 0 is simplicial
with respect to these triangulations; thus there are triangulations T(A) and
T (X) of A and X, such that the map 0 is given by a simplicial map also
called 0 : T(A) -> T(X); and we have arranged it that T(A) and T(X)
contain, respectively, subcomplexes T(K) and T(B), on which the restriction
of 0 yields the map K -> B which we want to use for identifying some
things.
Now, we barycentrically subdivide, obtaining 0' : T'(A) -> T'(X). This
makes the subcomplexes covering K and B into "full subcomplexes". In
other words, we can define the simplicial complex I to consist of two vertices
0 and 1 and the 1-simplex [0, 1], and get simplicial maps el : T'(A) -+ I
and C2 : T'(X) -4 I, such that T'(K) and T'(B) are the inverse images,
respectively, of 0. Now we barycentrically subdivide once more, getting 0" :
T"(A) -+ T"(X), el : T"(A) - I', and e2 : T"(X) -+ I', where I' is the
subdivision of I at 0.5.
In the simplicial category, we now identify the vertices of T"(K) to those of
T"(B) by means of the map 0" restricted to these; and we identify simplexes
of T"(A) as required. The resulting simplicial complex, T"(A)/(T"(K) =
T"(B)) is to be called T(P), a triangulation of a polyhedron P = IT(P)I.
In T(P) a simplex will consist of a set of vertices which are the image of
some vertex set of some simplex of T"(A). The map f : P --* X is the



194 J.R. Stallings

resulting geometric realization of the simplicial map T(P) -a T"(X) which
exists because T(P) is a pushout in the simplicial category:

T"(K) --f T"(A)

I I-
T"(B) -i T(P)

T"(X )

The map in this diagram, from T"(A) to T(P), we call a. Then, a is an
identification map in the simplicial category, but its geometric realization
makes some identifications on points within the open star of T"(K) in T"(A),
so that it is not, strictly, the topological identification map.
WHY a IS k-CONNECTED. Consider the map Jell : A -> III. This is the
same as ei. The set lell_1([0,0.5]) is the closed star of T"(K) in T"(A),
and it deformation retracts to K by a simple formula involving barycentric
coordinates. This defines a deformation retraction also from the closed star of
T"(B) in T(P) to B. Furthermore, the set lei1-1([0,1)) deformation retracts
to lei 1-1([0, 0.5]); and similarly in the polyhedron P. On jell-'([0.5, 11) the
map a is a homeomorphism to its image in P.
We now apply Lemma 1.8 on homotopy triads, using the following notations:
For A and B in 1.8, we now have A and P; the map f : A -> B is now
a : A - P. For X1 and X2 in 1.8, we have lei 1-1 Q0, 1)) and lei 1-'((0.5, 11).
For U1 and U2 in 1.8, we have a(le,1-1([0,1))) and a(leiI-1((0.5,1])). With
these notations, then, the maps X2 - U2 and (X1 fl X2) -+ (U1 fl U2) given
by a are homeomorphisms. Now, X1 contains K and U1 contains B, each as
deformation retracts, and so from the assumption that K --> B is k-connected,
we get the conclusion that X1 -p U1 is k-connected. Thus, the map Xl - U1
is k-connected, and the maps X2 -> U2 and (X1 fl X2) -* (U1 fl U2) are oo-
connected. It follows then from 1.8 that the map a : A -4 P is k-connected.

11

2. Quasi simple filtration

From now on, "space" will mean "polyhedron" and "map" will mean "poly-
hedral map".

2.1. SIMPLE MAP: That a map f : A -4B is "simple" over X C B, means
that the restriction of f to the inverse image of X is a homeomorphism onto
X. (I.e., f yields f-1(X) X.)

2.2. QUASI SIMPLE FILTRATION: That a space A is "qsf" ("quasi simply
filtrated"), means: A is locally compact, and for every compact X C A, there
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exists compact, 1-connected B and a map f : B -+ A, such that f is simple
over X. (The terminology used in a preprint circulated earlier by myself used
the terminology "Property B" for "qsf". The definition is due to Stephen
G. Brick; his version of the results sketched here is the paper [B].)
A qsf space A can be easily seen to be 1-connected itself; the important
words in the definition are "compact" and "1-connected". Thus, that the
space A is qsf, means intuitively that A can be approximated by 1-connected
and compact pieces; something like the idea of being an increasing union of
simply-connected pieces, but we do not require the pieces themselves to be
embedded into A out near infinity.

2.3. QSF-COVERED COMPACT POLYHEDRA AND QSF GROUPS: A compact
0-connected space A is said to be "qsf-covered", when its universal cover A
is qsf. We shall then call a finitely presented group G "qsf", if it is the
fundamental group of some compact A which is itself qsf-covered. (It follows
from results below, 3.5, that if G = ir1(A) for some qsf-covered A, then for
every compact 0-connected B with 7r1(B) G, we can conclude that B is
qsf-covered. Thus, qsf is a group-theoretical property.)

2.4. Theorem. Suppose that A and B are locally compact. Let f : A -* B
be a proper map. Then:
(a) If A is qsf and each f-1(x) is 0-connected, then B is qsf.
(b) If B is qsf and each f'1(x) is 1-connected, then A is qsf.
(c) Thus, if for every x E B, the set f-1(x) is compact and 1-connected, we

conclude: A is qsf if and only if B is qsf.

Proof. Clearly, (c), which is the main point, is a consequence of (a) and (b).
We should also remark that "0-connected" is taken to imply "non-empty", so
that in this Lemma, the map f is always surjective.
THE PROOF OF (a): Let X C B be compact. Since f is proper, the set
Y = f -1(X) is compact. Assuming that A is qsf, there is a compact 1-
connected T and map g : T -p A which is simple over Y. We identify g-1(Y)
with Y. We thus have

f_1(X) = Y
If
X

C

C

T

1f9

B

This is the situation of 1.10. There exists compact P containing a copy of
X; this P is an approximation to what we would mean by T/(f-1(X) = X).
There is a map P -+ B in this picture, and the conclusion "f-1 (B) = B" in
1.10 translates to show that P -* B is simple over X. By assumption, each
f -'(x) C Y is 0-connected; by 1.9, then, the map Y --> X is 1-connected,
and so by 1.10 the map T -* P is 1-connected. Because T is 1-connected,
this implies that P is 1-connected. End of proof of (a).
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THE PROOF OF (b): Let X C A be compact; let Y = f(X), a compact
subset of B. Assuming B is qsf, there exists g : T -a B such that T is
compact 1-connected and g is simple over Y. Then g and f map T and A
to B; T is compact, and f is proper; thus by 1.6, the pullback exists; call
the pullback P; there is a map in the pullback diagram g' : P -- A, and
another map f' : P -> T; the map f' has inverse images of points the same as
inverse images of points under f, thus each such is 1-connected and compact.
Now, 1.9 implies that f' is 2-connected, and so f; : irl(P) -> ir1(T) is an
isomorphism. This shows that P is 1-connected, since T is. We can now
examine the map g' : P A; the fact that g is simple over Y yields the
consequence that g' is simple over f-1(Y) which contains X.

3. Qsf-covered polyhedra and groups

3.1. Lemma. Suppose P is a compact connected polyhedron with given
triangulation T. Let Q = IT(2)I be its 2-skeleton. Then P is qsf-covered if
and only if Q is qsf-covered.

Proof. By induction on the dimension of P, starting with dimension 2. The
inductive step is as follows: Let n > 3. Let K= IT ("-')I and L = IT(' )I. We
have al(K) irl(L) and, on universal covers, k C L. We show that k is qsf
if and only if L is qsf.
There is a triangulation of L lying over the triangulation T(">, whose (n -1)-
skeleton is a triangulation of K. We call these the "standard triangulations".
Suppose that L is qsf. Let X be a compact subset of K. There is a finite
sub complex S of the standard triangulation of L, such that X lies well within
the interior of ISO in L; we can take S to be the closed star of the closed star
of any finite subcomplex containing X. Since L is qsf, there is a compact
1-connected B and map f : B -* L which is simple over ISI; we identify ISO
with f-1(ISI) C B. Then B has a triangulation whose simplexes near X are
the simplexes of the standard triangulation, and whose simplexes away from
X are fairly small; the map f then has a simplicial approximation f from this
triangulation of B into the standard triangulation, such that near X it is, so to
speak, the identity map. We can also manage to get f -1(L \ X) C f -1(L \ X),
so that f is simple over X. Now, remove all the open simplexes of dimension
n from L, getting k; from B remove all the open simplexes mapping into
these by f; all such simplexes being removed are of dimension 3 or more, and
so the result, b, is still simply connected, and the restriction of f to B is
simple over X. This shows that K is qsf.
Conversely, suppose that k is qsf. Let X be a compact subset of L. Let S
be a finite subcomplex of the standard triangulation of L, with X C ISI, and
let Y = ISI fl K. Since k is qsf, there exists compact 1-connected B and
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f : B -> K which is simple over Y. Now, we add to Bthe n-simplexes of S;
the result is b and an extension f of f, to map B -> L simple over ISI. We
know that b is 1-connected, since n > 2.

3.2. REMARK: There is another intuition about the above Lemma 3.1: We
could obtain the general case from the 2-dimensional case by adding on high-
dimensional cells; adding on a single n-cell can be done in two steps. First we
add on a shell of the form Si-1 x [0, 1], i.e., creating a mapping cylinder of
the attaching map; we can retract this to the previous stage by a map whose
inverse images are all points or line segments, and then we can apply 2.4 to
the universal cover. Then we identify the sphere Sn' x 0 to a point; this is
a thorny matter, since we can't simply "identify" such things but have to use
techniques such as 1.10; thus the hypotheses of 2.4 might not, conceivably,
be exactly true. Perhaps there is a better way of stating 2.4, so that it could
apply to such polyhedral near-identifications.

3.3. Lemma. If K and L are two compact connected 2-dimensional
polyhedra with isomorphic 1r1, then there exists a compact polyhedron M and
compact subpolyhedra K' and L', such that M collapses onto each of K' and
L'; furthermore, K' is the wedge of K and a finite number of S's, and
similarly L' is the wedge of L and a finite number of S2is.

3.4. COLLAPSING: Explicitly, the "collapsing" referred to here involves sim-
plicial structures. One says that A collapses to B, when there is a trian-
gulation of A with B covered by a subcomplex, and there is a sequence of
elementary collapses to get from A to B. An elementary collapse from A to
B involves some simplex v of A not in B, and a face r of a which is a face
of no other simplex of A (one says that r is a "free face" of A); one then
removes the interiors of v and r to get B.
This result 3.3 goes back to J.H.C. Whitehead [W]; it is a combination of
Whitehead's Theorem 12 on page 266 with his Corollary on page 270. White-
head's proof involved looking at certain moves changing one group presen-
tation into another of the same group; these are "Reidemeister moves" or
"Tietze transformations". Brick's method [B] of proving the next Theorem
uses these moves more directly.

3.5. Theorem. If K and L are two compact connected polyhedra with
isomorphic 7r1i then K is qsf-covered if and only if L is qsf-covered.

Proof. By 3.1, we can restrict ourselves to 2-dimensional polyhedra. By 3.3,
we need consider only the two cases: (a) L is the wedge of K with a 2-sphere;
(b) L collapses to K. In case (a), there is a map from L to K such that the
inverse image of every point is either a point or a 2-sphere, and so by 2.4
applied to universal covers, L is qsf-covered iff K is. Case (b) can be reduced,
inductively, to one elementary collapse; if L collapses to K by an elementary
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collapse at the free face r and simplex o, then one can subdivide by adding
one vertex in r and retract L to K by sending this vertex to the vertex of o
opposite r; as a polyhedral map r : L -> K, the inverse image of each point
is either a singleton or a closed line segment, and thus, 2.4 applies to the lift
of r to the universal covers. 0

4. Immersions and towers

Note that the definition of qsf (in 2.2) involved maps B -+ A which were
simple over X. We assumed only that the map B -* A was polyhedral.
It turns out that this implies that we can manage to find B and B -a A
which is a local embedding ("immersion") that is obtainable by a tower of
covering projections and embeddings. It can thus be thickened up to a regular
neighborhood situation, so that, for instance, if A is an n-manifold, then B
will be an n-manifold as well, and the map B -p A will be an immersion of
manifolds. This "tower" idea to obtain an immersion is due to S.M. Gersten
(similar results occur in work of Poenaru not using towers; in fact towers have
been used in 3-manifolds before by Papakyriakopoulos [Pa] among others, and
earlier in the theory of infinite groups by Magnus [Ma]).

4.1. TOWER: Given a map 0 : B -> A of spaces, a "tower of height n" over
this map 0, consists of the following:

(a) Spaces Bo, ..., Bn, and A = Co, C1, ... , Cn.
(b) Covering-space projections pi+1 : Ci+1 -+ B,. That is, Ci+1 is a covering

space of Bi, and the projection is called pi+1.
(c) Inclusion maps ji : Bi -4 Ci.
(d) Surjective maps 4)i : B -* Bi, such that pi ji¢i = ¢i_1.
(e) The tower starts with Bo = O(B), and ¢o : B -> B0 being the map 4)

with the range restricted to B0, and jo : B0 -4A being the inclusion.

In this definition, we shall always have B a compact polyhedron, and so
we can consider only the case that A also is compact. The map 0 can be
triangulated. Then B0 is covered by a subcomplex of the triangulation of A.
Each covering Pi+1 : Ci+1 --p Bi will be triangulated without changing the
given triangulation of Bi. The lift 4)i will then be simplicial on the same
triangulation of the source B as originally given, and the polyhedron Bi
will then be triangulated as a subcomplex of the triangulation of Ci. The
polyhedra Bi are compact, and the polyhedra Ci may not be compact.
In the case we are interested in, B is 1-connected, and each of the covering
spaces pi : Ci -> Bi_1 can be taken to be a universal covering space. If this is
a non-trivial covering, the singularities of 4i will be less than the singularities
of 4)i_1; we can make this precise by counting the number of simplexes of all
dimensions in the explicit triangulations of Bi; as i increases, the number of
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simplexes in B; increases. But the number of simplexes cannot exceed the
number of simplexes in B itself. Therefore there will be some finite n for
which Bn has no non-trivial covering space; at that point, we say that the
tower terminates, with 1-connected Bn.
We can then examine the composition j0p1j1p2j2 pnin : Bn -+ A, and have
a proof of the following result:

4.2. Theorem. Let ¢ : B -+ A be a map which is simple over X C A,
where B is compact and 1-connected. Then there exists compact 1-connected
E and map 0 : E -+ A simple over X, such that 0 is a composition of a
finite number of inclusions and covering projections. Furthermore, if A is
a PL manifold, we can take E to be a PL manifold (with boundary) of the
same dimension, with 0 still being a composition of inclusions and covering
projections.

Of course, E is the Bn above. We can thicken everything into being a man-
ifold, by taking regular neighborhoods and coverings. The reason that 0 is
simple over X is this:

4.3. Lemma. If On : B -* Bn is surjective, and 0 : Bn -a A is such that
0cbn : B -> A is simple over X, then zG is simple over X.

5. Unions of qsf spaces

One of Brick's interesting results is:

5.1. Theorem. An amalgamated free product A *c B has property qsf, if
both A and B are qsf and C is finitely generated.

Sketch of proof. One constructs a space with fundamental group A *C B by
taking two compact spaces KA and KB with groups A and B, and joining
them together with the cylinder on a finite 1-complex which represents the
generators of C mapped into the two respective groups. This resulting space
is to be shown to be qsf-covered, by looking at its universal cover. The
universal cover is a treelike arrangement of copies of universal covers of KA
and KB joined along the C covers. We can show this is qsf by considering
only a finite number of pieces at a time, and reduce this to a Lemma about
the union of two qsf spaces:

5.2. Lemma. Let M be a space which is the union of two closed subspaces
K and L, such that K fl L is connected. If both K and L are qsf, then M is
qsf.

Proof of Lemma. (Recall that all "spaces" are locally compact polyhedra.)
Let X be a compact subspace of M. Then X fl (K fl L) is compact and is
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contained in a compact connected subspace Y C K fl L. Let X' = X U Y.
Let XK = X' fl K and XL = X' fl L. Since K is qsf, there is a compact
1-connected BK and map fK : BK -> K which is simple over XK. Since
L is qsf, there is a compact 1-connected BL and map fL : BL --> L which
is simple over XL. Now, the inverse images, under fK and fL, of Y can be
identified with Y since these maps are simple over Y. Thus, we can take the
union of the two B's and identify the copies of Y, getting B = BK Uy BL and
f = fK U fL : B -p M (note that the union of two polyhedra over isomorphic
subpolyhedra is a case in which the true pushout of polyhedra exists). Then
B is compact, being the union of two compact spaces; B is 1-connected, being
the union of two 1-connected spaces along a connected subspace; and f, it is
easy to see, is simple over X'.

An application of this to 3-manifold theory can be imagined thus: Take a
3-manifold, decompose it into canonical pieces, thus making the fundamental
group a graph-product of several factors. Apply 5.1 (or its analogue for HNN-
extensions). Thus, to show that the 3-manifold itself is qsf-covered, it would
be enough to show that each "canonical piece" is qsf-covered.
Here is another application: We know that there exists a finitely presented
group with unsolvable word problem. If F denotes the free group on the
generators of the presentation involved, and R denotes the subgroup of F x F
generated by the diagonal elements (a, a) for a belonging to the basis of F, and
by the elements (1, r), where r ranges over the set of relators, then Rfl (1 x F)
is 1 x (the normal closure in F of the set of relators). Thus, the generalized
(relative) word problem for R in F x F is unsolvable. Hence, taking the
"double" amalgamated free product

H = (F x F)1 *R (F x F)2,

we can ask whether, for u E F, the element (1, u)1 (1, u)21 is the identity
element in H. This is equivalent, because of the structure of amalgamated
free products, to asking whether u belongs to the normal closure in F of the
set of relators. This problem is unsolvable, and so the word problem for H
is unsolvable. Note that H has a finite presentation, since the subgroup R
is finitely generated. Now, a finitely generated free group F, and its product
with itself are easily seen to be qsf (the universal cover of the product of
two finite 1-complexes is the increasing union of subcomplexes which are
contractible, being the products of two finite trees; rather more general results
about products are true, of course); and therefore by 5.1, H itself is qsf:

5.3. Corollary. There exists a finitely presented group which is qsf and
which has unsolvable word problem.

(The argument above has some similarities with matters in [Mi], and I have
heard that Miller and D. Collins have an even better example, a finitely
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presented group for which the 2-complex of the presentation is aspherical,
such that the group is obtained from a process of a finite number of steps,
each of which is an amalgamation or HNN extension over a finitely generated
free group, starting with free groups.)
This suggests an embarassing:

5.4. UNSOLVED PROBLEM: Is there a finitely presented group which is not
qsf?

6. Universal covers of 3-manifolds

The ideas of this paper apply to (second countable) 3-manifolds because of
the theorem that 3-manifolds are triangulable [Mo].
Suppose that M3 is a closed, aspherical3-manifold. If irl (M) is qsf, then
for any compact connected subset X C M, there is a compact, 1-connected
B and a map, simple over X, f : B -> M. By the tower technique 4.2
we can take B to be a compact 3-manifold with boundary; the boundary
of B, since B is 1-connected, consists of 2-spheres. At least one of these 2-
spheres S will be non-bounding in M \ {x} for a point x E X. Thus, by the
Sphere Theorem [Pa] [He] [Mo], in a neighborhood of f (S) in M, there is an
embedded 2-sphere E, non-bounding in the complement of x. But E bounds a
compact, 1-connected submanifold 0 of M, which must contain x, and which
therefore must contain all of X, since X is connected and disjoint from E. If
M is "irreducible", then 0 must be a 3-cell, and so the whole manifold M
is the union of an increasing sequence of 3-cells, and so is (by M. Brown's
theorem [Br]), homeomorphic to R3. Meeks, Simon, and Yau ("Equivariant
Sphere Theorem") ([MSY], [DD], [JR]) have shown that this irreducibility
condition follows from assuming that M itself is irreducible (i.e., any tamely
embedded 2-sphere in M bounds a topological 3-cell in M). Thus we have:

6.1. Theorem. Suppose that M is an irreducible, aspherical, closed
3-manifold, and that irl(M) is qsf. Then the universal cover M is homeo-
morphic to 1R3.

7. Further problems

How can one describe various classes of groups which are qsf? Some results
about this are in [B], [BM], and [MT]. The question in 5.4, as to whether
every finitely presented group is qsf, is still unsolved. [Added in Proof: S. T.
Tschantz says he has an example of such a non-qsf finitely presented group.]
One can conjecture that certain cases, such as fundamental groups of high-
dimensional closed aspherical manifolds, are always qsf.
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Suppose that G = ir1(K), where K is compact and has universal cover K
which is n-connected. We can ask, in analogy to the definition of qsf, whether
K can be approximated by n-connected compact polyhedra. This might lead
to a "qsf(n)" property. Conceivably this series of properties and the original
qsf property itself might turn out to be significant in group theory.
The technical difficulties in the definitions and arguments in this paper are
annoying. My instinct was to utilize CW-complexes and say it was all obvious;
but in the usual version of CW theory there are many things that are not
true: The image of a subcomplex under a cellular map is not necessarily a
subcomplex of the target; the preimage of a subcomplex and more generally
the pullback of a CW diagram is not a subcomplex and does not have a
CW structure. Identification spaces work out, however, fairly reasonably. In
trying to smooth out the CW structures and restrict the class of maps that
can be considered, the subject matter seems to be inexorably drawn towards
polyhedra.
This topic seems to be purely homotopy-theoretical and so ought to have
some description in those terms. Thus, to say that P is qsf, when P is a
contractible 3-manifold, is equivalent to saying that P is 1-connected at 00.
In other dimensions, however, qsf is not the same as being 1-connected at
00.

In another direction, there are non triangulable manifolds and other non poly-
hedral spaces, for which there might be some sort of qsf theory, with towers
and so on. This would require a geometric theory more general than poly-
hedra; perhaps, absolute neighborhood retracts and maps which have some
smoothness property; perhaps, the inverse images of sub-ANR's should be
ANR's themselves. In such a theory, there would be interesting problems,
such as those related to the tower constructions and why certain towers ter-
minate at a finite stage.
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A Note on Accessibility

G.A. Swarup

Department of Mathematics, University of Melbourne, Melbourne, Australia.

We simplify Dunwoody's proof of accessibility of almost finitely presented
groups [3,2]; and as in [4], the proof goes through for groups which act on
planar complexes. The main difference between Dunwoody's proof and the
proof here is that we do not use the existence theorem for splittings (The-
orem 4.1 of [3], and Theorem 5.9 of [2]) to prove accessibility; there is also
a proof due to Bestvina and Feighn [1] which does not use the existence of
splittings. We recall that the accessibility assumptions arise in topological
situations ([6], [7] and [8]) and the question of accessibility was first raised
by C.T.C. Wall [8]. Our interest in accessibility came from the extension of
Dehn's lemma to higher dimensional knots [7], which itself was a by-product
of an attempt to show that higher dimensional knot groups were not free
products.
We recall Dunwoody's extension of the theory of normal surfaces to simplicial
2-complexes. If K is a simplicial 2-complex (we use the same symbol for the
geometric realization), a pattern P in K is a subset of K such that
(1) P n K° = 0,
(2) P n o for any closed 2-simplex o consists of at most a finite number of

segments which are disjoint and each of which joins different sides of o
(see Fig. 1.a), and

(3) P n p for any 1-simplex p of K consists of at most a finite number of
points.

Figure l.a Figure 1.b

A connected pattern is called a track. A track can be thickened to a band
(Fig. 1.b, see [2], VI 3). We call a track 2-sided if the thickening is an
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untwisted band. If the thickening is a twisted band, the track is said to be
1-sided. If the number of segments in a track is finite or if it is a point, we
call the track a finite track. Dunwoody extends the Kneser-Haken finiteness
technique (see [5]) to show

Theorem 1. (Theorem 2.2 of [3] and Theorem 3.8 of Chapter VI in [2])
For a finite complex K, there is a positive integer n(K) such that, if ti, ... , t,n
are disjoint tracks in K and if m > n(K), then at least two of the tracks are
parallel (i.e. they bound an untwisted band).

We next observe how tracks arise from splittings of groups. (The following
argument seems to be favoured by topologists. Dunwoody suggests an ar-
gument modelled after the one on pp. 231-232 of [2]). For the rest of this
exposition, we have the following set up:
K is a finite complex, a : iri(K) --+ G is a surjection of groups, ir : if' --+ K
the cover of K corresponding to the kernel of a. We assume that Khas the
following planarity property: the natural map r : H,-'(K; Z2) --> H1(K; Z2) is
zero. We identify G as the group of covering translations of 7r and K/G = K.

We want to show that G is accessible. Suppose that G has a non-trivial de-
composition as an amalgamated product G = G, *G,, G2 or an HNN-extension
G1*Go with Go finite. We first construct a complex L = L1 UL,, L2 or L1ULo
with irl(Li) = Gi and L° is 2-sided in L. The last condition means that there
is a neighbourhood N of Lo in L, and N is homeomorphic to L° x [-1, 1] with
L° corresponding to Lo x {0}. We further assume that ir2(Li) = 0 = 73(Li),
for all i.
Let f : K -i L be a map such that, up to conjugacy, f* = a : irl(K) 7rl(L),
f (K°) C L - Lo and f restricted to any 1-simplex or 2-simplex is transverse
to Lo. Thus f-1(L°) looks almost like a pattern. However, there may be
segments with both end points in the same 1-simplex of K. If there are such,
starting with an innermost one, we may eliminate them, one by one, as shown
in Figure 2.a and 2.b.

Figure 2.a Figure 2.b
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Thus, after a homotopy, we may assume that f -1(Lo) is a pattern. Suppose
that a component s of the pattern f-1(Lo) divides K into two components
whose closures are Kl, K2 and further suppose that a(irl(Ki)) = a(7ri(s))
for i = 1 or 2. Then s can be removed from f -1(Lo) by a further homotopy
and so we may assume that none of the components of f-1(Lo) satisfies the
above property (which we will temporarily call Property S) which we next
formulate in terms of the cover it : K --+ K. Let t be a component of it-1(s);
t is finite since the stabilizer of t is contained (up to conjugacy) in the finite
group Go.
We next observe that t separates K. To see this consider the Z2-cochain
Ct defined by Ct(y) = It fl yI mod2 for every 1-simplex p of K. If a is a
2-simplex, t intersects 8a in an even number of times and therefore Wt = 0.
Since the image of H.',(K; Z2) in Hl(K; Z2) is zero, Ct is a co-boundary, say
Ct = SU = SU*, where U and U* are complementary subsets of Ko. For
each 2-simplex a of k, we colour the components of or - t containing points
of U* black and colour the rest of them alternately (see [2], Chapter VI,
Propositions 3.4 and 3.5). It is easy to check that we get a consistent colouring
of components a - t which fit together as or varies to give the two components
of k - t. Let the closures of the two components be C1 and C2.
Property S is equivalent to the assertion that one of C1 or C2 is compact.
We prove one of the implications, the other is easier. Suppose C1 is compact,
then C2 is noncompact. Moreover C1 cannot contain any translate of t since
this would contradict the compactness of C1. A covering translation cannot
interchange the sides of t since a(t) = s is 2-sided. Hence Stab t = Stab C1,
which implies that s separates K, the closure of one of the components is
ir(Ci) and a1r1(7r(Cl)) = a7r1(7r(t)) = a7ri(s). Thus s satisfies property S
and should have been eliminated from f-'(Lo). Thus, neither C1 nor C2 is
compact and Ct represents a non-trivial element of H. (K; Z2).
Now consider k - it-1(s) = k- UgEGg(t). Taking one vertex for each
component, and joining them by a segment when the closures intersect, we
obtain a tree I' on which G acts without inversions, since s is 2-sided. This
gives us a new decomposition of G. If K is split along s to form K1 U3 K2 or
K1 U, s and a(ri(Ki)) = Hi, a(7rl(s)) = Ho, then G = H1 *Ho H2 or H1*Ho
is the decomposition of G given by the above action on the tree F.
We next observe that Ki (one of them may be empty, in which case assume
K2 = 0,) obtained by splitting K along s has a special type of cell-structure,
which we call a marked cell structure. (Dunwoody uses similar constructions
in [2], p. 264). For this structure, the cells are of six different types as in
Figure 3, where the marked cells are dotted.
We are considering only the marked cell complexes which are obtained from
simplicial complexes by splitting successively along tracks which for marked
cell complexes are assumed to be disjoint from marked cells. Such a track



Accessibility

Figure 3
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is automatically a track in the original simplicial complex. It is also easy to
check that splitting a marked cell complex along a track again yields a marked
complex. After the above decomposition G = Hl *Ho H2 or Hl *H,, using the
tracks, suppose that one of the Hl is further decomposable as Hl = Hi *H, HZ
or Hi*H,, and continue. At each stage the new track si is not parallel to any
of the previous tracks (since their fundamental groups map into finite groups)
as long as we can decompose any of the new groups that are obtained. By
Theorem 1, the process has to stop after a finite number of steps since we
cannot find more than n(K) tracks, no two of which are parallel.
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Problem 1. [J.M. Alonso] Do torsion free combable groups always have finite
cohomological dimension?

The Rips complex shows that the answer is yes for hyperbolic groups, and that
combable groups are finitely presented of type FPS (cf. Alonso, Combings
of groups). Brown and Geoghegan showed that the Thompson group r (see
Probl. 13) is torsion free, of type FPS and has infinite cohomological dimen-
sion. Gersten has proved that r is not combable, since it has an exponential
isoperimetric inequality.

Problem 2. [Anon.] Let G be an automatic group. Is there a finite dimen-
sional, contractible CW complex on which G acts properly discontinuously?

Problem 3. [Anon.] Does every negatively curved group contain a proper
subgroup of finite index?

Problem 4. [M. Bestvina] Let K be a compact, non-simply connected, acyclic
simplicial complex in which the triangulation is full, and let V be the set {vo I
o is a simplex of K}. Define a Coxeter group I' by the following presentation:

P = (V I vo = 1, (VV,)-(-,T) = 1),

where
12, if o is a face of r or vice versa;

m(o, r)
oo, otherwise.

Then vcd (I') = 2. Is there a finite index subgroup I'o C I' which admits a
2-dimensional K(I'o,1)?

Problem 5. [M. Bestvina] Definition: An automorphism 0 of a free group F
is a generalised Dehn twist with respect to a basis {al, a 2 ,- .. , an} for F, if
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some power 0k has the form:

ok =

a1 -a a1,
a2 -+ w2a2V2,

ai - wiaivi,

an -a wnanVn,

209

where each wi and vi is an element of the subgroup (al, ... , af_1).
Suppose that G is a finitely generated subgroup of Ant (Fn) which consists
entirely of generalised Dehn twists, each with respect to its own basis. Is
there always a basis {al, a2, ...,an} for F and a finite index subgroup of G
which consists entirely of generalised Dehn twists with respect to this basis?

Problem 6. [H. Chaltin] Let R be an integral domain, and G be a group
for which the group ring RG is also an integral domain. Is DG an integral
domain for every integral domain D?

Problem 7. [R. Charney] Are Artin groups of infinite type automatic, bi-
automatic or semi-hyperbolic?

Problem 8. [D. Epstein] Is there any connection between isoperimetric in-
equalities and time estimates for algorithms solving the word problem?

Problem 9. [D. Epstein] Is the class of automatic groups closed under quasi-
isometry? Thurston thinks not. Gromov pointed out that this is not even
known for co-compact lattices in Lie groups.

Problem 10. [R.G. Fenn] Let R be a finite rack. When is the rack homomor-
phism R -+ As (R) injective?

Problem 11. [R.G. Fenn] Give a list of all finite simple racks.

Problem 12. [S. Gersten] Let 0 be an automorphism of a free group F, and
let IF be the corresponding semidirect product r = F x, Z. Is r always
bi-automatic?
Bestvina and Feighn have shown that if r has no subgroups isomorphic to
Z x Z then it is hyperbolic, so the answer in this case is yes. On the other
hand Gersten showed that if 0 has the form:

then r cannot exist as a subgroup of any group which acts co-compactly on
a non-positively curved space. This seems to be evidence in the opposite
direction.
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Problem 13. [R. Geoghegan] Let F be the group given by the following
presentation:

(xo) x1, ... , I xi lx,,xi = xn+l Vi < n).

It was discovered by R. Thompson, and has been studied by many people (e.g.
Freyd-Heller, Hastings-Heller, Dydack, Brown-Geoghegan). It is torsion free
and has a finite presentation.
In 1979 Geoghegan conjectured that

a) F has no non-cyclic free subgroups, and
b) F is not amenable.

There are no known examples of a finitely presented group which satisfies
both of these properties, but Grigorchuk found a finitely generated group
satisfying them both in 1980. Brin and Squiers showed in about 1984 that
the Thompson group satisfies a). Show that it satisfies b).

Problem 14. [A. Haefliger] Let r be a group acting properly discontinuously
and cocompactly on a simply connected Riemannian manifold. Show that I'
contains some element which has no fixed points.
This is connected with the question of whether or not there exists an infinite,
finitely presented, torsion group.

Problem 15. [P. de la Harpe] A group r of homeomorphisms of S1 is said to be
cyclically n-transitive if, given any two cyclically ordered n-tuples (x1i ... , X")

and (y1, ... , yn) there exists -y E F such that (xi, ... , xn) _ ('Y(yi)...... Y(yn))
For example PSL2(IR) is a cyclically 3-transitive group and Homeo(S1) is
cyclically n-transitive for all n. Find a group r which is cyclically n-transitive
but not cyclically n + 1-transitive for some n > 4.

Problem 16. [P. de la Harpe] A homeomorphism 0 of a compact metric space
X is said to be hyperbolic if it has exactly two fixed points a and 0, and for
any neighbourhoods A of a and B of /3 there is a positive integer N such that
for all n larger than N, on (X N A) C B and q-n(X N B) C A. (X is assumed
to have more than 3 points)
Let F be any lattice in a real, simple Lie group of real rank greater than or
equal to 2, e.g. F = SL3(Z). Does there exist a compact metric space X and
an action of r on X which has hyperbolic elements?

Problem 17. [J. Howie, R. Thomas] Is the group G13,4 given by the presenta-
tion (a, b I a2 = b3 = (ab) 13 = [a, b]4 = 1) finite or infinite? If the exponents
13 and 4 are replaced by any other pair of integers the answer is known.
The group G has a homomorphic image H x PSL (2,25), where H is an
extension of PSL (3, 3) by 7L22. This image is too big for existing packages
to examine the kernel successfully. On the other hand small cancellation
methods which can be used to show that Gp,q is infinite for some other values
of p and q, fail in this case.
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Problem 18. [P.H. Kropholler] Let G be the fundamental group of a closed
hyperbolic 3-manifold, and H and K be finitely generated, geometrically finite
subgroups of infinite index in G. Do there exist subgroups Ho, Ko of finite
index in H, K respectively such that (Ho, Ko) has infinite index in G?

Problem 19. [P.H. Kropholler] Let G be the fundamental group of a hyperbolic
3-manifold, and let H be a locally free subgroup of G. Is H necessarily free?
Problem 20. [P.H. Kropholler] Mess has shown that the Baumslag-Solitar
groups (x, t I (xp)t = x9) can be embedded in Poincare duality groups of
dimension 5 (PD'-groups). Can they be embedded in PD'-groups for p
±q?

Problem 21. [M. Lustig, Y. Minski] Let G be a group acting freely on some
-tree T; let II9II denote the hyperbolic length function of g with respect to

this action. Fix a generating system S of G, and denote by IgIs the word
length of g with respect to S. The G-action is thin if there is a sequence
91)927 ... , E G N {1} with Igi Is II9i II '-') 0, otherwise call the action thick.
Is the set of thick actions uncountable? Is the set of thick actions of measure
zero in some reasonable sense? These are both true if G is free abelian,
according to the Falmer pub research group. If F is a free group and 0 E
Out (F) commutes with a homothety of T (i.e. [II - IIT] E SLF is fixed by
0), does it follow that T is thick? This is true if G is the fundamental group
of a 2-manifold by work of Minski.

Problem 22. [Y. Minski] Let S be a surface, and L be a geodesic in the
Teichmiiller space of S. L is said to be thick if there is a uniform lower bound
on the length of non-peripheral essential curves in S, for all hyperbolic metrics
represented by points along L. Are there uncountably many bi-infinite thick
geodesics? (H. Masur has shown that the subspace of thick geodesics has zero
measure.)
Note that all rays whose endpoints are fixed points of pseudo-Anosov dif-
feomorphisms are thick. There are "periodic" examples; there should be
aperiodic ones as well.

Problem 23. [Y. Moriah] Let G be a group generated by X. An automorphism
¢ of G is said to be tame if it is induced by an automorphism of the free group
on X. Is there a way to distinguish tame and non-tame automorphisms of G
by examining the Cayley graph with respect to X?
Problem 24. [W. Neumann] The abstract commensurator of a group f is

Comm (F) = {ieomorphisms between finite index subgroups of r} / - ,
where 01 - 02 means that 01 and 02 agree on some finite index subgroup.
Suppose that r is negatively curved, and no finite index subgroup is reducible.
Suppose, moreover, that Comm (I') is "large" in a suitable sense, (maybe
IComm(F) : ri = oo is sufficient?). Is r then an arithmetic subgroup of an
algebraic group?
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Problem 25. [W. Neumann] Let SC denote the abstract commensurator of
7rl(F) where F is any closed surface of genus greater than one. SC acts
effectively on the circle at infinity of irl (F), and is therefore a subgroup of
Homeo (S' ). Is it a dense subgroup? Bass showed that the analogue for
free groups is true; the abstract commensurator of a free group IF is dense in
Homeo (C) where C is the Cantor set at infinity of r.

Problem 26. [W. Neumann, A Reid] Let G be the group of Isometries of 1H13,
let K be a knot in S3 and let r < G be such that 111(3/F is the complement of
K in S3. Suppose that Comm,-, (F) 0 N(F), where

Comm0 (F) = {9 E G I F9 fl r has finite index in both r and F9}
and N(F) is the normaliser of r in G. We then conjecture that K is either
the figure-8 knot, (the only knot with arithmetic complement), or one of the
two Aitcheson-Rubinstein dodecahedral knots. (These both have Commc (F)
equal to the isometry group of a regular, ideal dodecahedral tesselation of 1H13,
and S3 N K = 13/F.)
Problem 27. [F. Paulin] Let G be a negatively curved group. When is aG
locally connected? If aG has local cut points does this imply that G splits
over a virtually cyclic subgroup?

Problem 28. [L. Potyagailo] Let F and G be any finitely generated Kleinian
subgroups of SO (1, 4), where F is an infinite index normal subgroup of G
and F, G and G/F all act on a connected subdomain Sl C S3. Show that
7rl(Sl/F) is finitely generated if and only if 1 is simply connected.
This is true when G is the fundamental group of a closed hyperbolic 3-
manifold.

Problem 29. [A. Reid] Let M be a hyperbolic knot complement. Can M
contain a separating, totally geodesic surface?

Problem 30. [E. Rips] Is every (torsion free) negatively curved group Hopfian?
Note that if the group has no non-trivial actions on any R-tree then this is
true.

Problem 31. [E. Rips] Is every freely indecomposable (torsion free) negatively
curved group co-Hopfian? This is known when the group has no splitting over
a virtually cyclic group.

Problem 32. [H. Short] Gromov and 0lshanskii have shown that if a group
G has a subquadratic isoperimetric inequality, then it has a linear one. Are
there intermediate IPE's, say between n and n + 1?

Problem 33. [Swarup] Define quasi-simply filtrated algebraically. Is there a
connection between this notion and the end invariants of a group?

Problem 34. [Swarup] Is there an algebraic annulus theorem? I.e., given
an infinite cyclic subgroup C < G such that e(G, C) = 2 give reasonable
sufficient conditions for G to split over a subgroup commensurable with C.
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